ncnn-benchmark
The benchmark of ncnn that is a high-performance neural network inference framework optimized for the mobile platform https://github.com/Tencent/ncnn
Hardware Platform
Device | System | CPU-Family | CPU-Num | Freq |
---|---|---|---|---|
RK3288 | Android 5.1 | Cortex-A17 | 4 | 1.8GHz |
Qualcomm820 | Android 6.0 | Kryo | 2+2 | 2.15GHz/1.6GHz |
Mi5 | Android 7.1.2 | Kryo | 2+2 | 1.8GHz/1.3GHz |
Runtime Environment
1.Using the cpu working in performance model.
echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
2.Loop a hundred times to take the minimum value of Inference time-consuming.
Result
Devices | Models | Input Size | Single-Thread(ms) | Multi-Threads(ms) |
---|---|---|---|---|
RK3288 | SqueezeNet v1.1 | 227x227x3 | 194 | 80 |
MobileNet v1.0 | 224x224x3 | 324 | 115 | |
ResNet18 | 224x224x3 | 807 | 291 | |
GoogleNet v1.0 | 224x224x3 | 740 | 261 | |
VGG16 | 224x224x3 | 3449 | 1506 | |
MobileNet-SSD | 300x300x3 | 652 | 245 | |
Qualcomm820 | SqueezeNet v1.1 | 227x227x3 | 91 | 47 |
MobileNet v1.0 | 224x224x3 | 150 | 70 | |
ResNet18 | 224x224x3 | 356 | 171 | |
GoogleNet v1.0 | 224x224x3 | 371 | 161 | |
VGG16 | 224x224x3 | 1956 | 846 | |
MobileNet-SSD | 300x300x3 | 330 | 160 | |
Mi5 | SqueezeNet v1.1 | 227x227x3 | 98 | 51 |
MobileNet v1.0 | 224x224x3 | 189 | 79 |
User Guide
1. Build the benchmark demo
build demo for Linux-x86
./build.sh linux
build demo for Android
./build.sh android
2. How to run the executable files.
If you build demo for linux success,and want to run the benchmark demo.
$ cp ./models/classification/squeezenet.param ./build-linux/install/bin/
$ cp ./models/classification/squeezenet.bin ./build-linux/install/bin/
$ cd ./build-linux/install/bin/
$ ./ncnn_classify squeezenet.param squeezenet.bin 227 227 1 1
Demo running params:
./ncnn_classify <ncnn-param-file> <ncnn-model-bin-file> <input-width> <input-height> <loops-num> <threads-num>
Example:
bug1989@ubuntu:~/ncnn-benchmark/build-linux/install/bin$ ./ncnn_classify squeezenet.param squeezenet.bin 227 227 10 2
--- NCNN Classification Benchmark Demo --- 22:41:09 Dec 26 2017
Loops : 10
Threads : 2
Time cost: Max 263.338 ms, Min 247.209 ms, Avg 252.652 ms.
The End
Thanks to ncnn's author nihui and all the contributors for sharing this framework.