Wenyuan Zhang1,
Ruofan Xing1,
Yunfan Zeng1,
Yu-Shen Liu1,
Kanle Shi2,
Zhizhong Han3
1Tsinghua University, 2Kuaishou Technology, 3Wayne State University
In this work, we introduce a general strategy to speed up the learning procedure for almost all radiance fields based methods by shooting much fewer rays.
Python 3 dependencies:
- pytorch
- matplotlib
- numpy
- imageio
- configargparse
Specifically, our experiments are conducted on six radiance field based methods, including NeRF, NeRF++, Plenoxels, Mip-NeRF 360, Instant-NGP and NeuS. We finetuned their official codes and apply our method to the baseline methods. To setup each individual environment for each experiment, please refer to the project pages of the baseline methods.
We use five datasets named synthetic dataset, llff dataset, lf dataset, tanks_and_temples dataset, which are widely used in radiance fields based methods. You can download the four datasets from the following links.
cd nerf-ours
Training
CUDA_VISIBLE_DEVICES=0 python run_nerf.py --config configs/lego.txt
Testing
CUDA_VISIBLE_DEVICES=0 python run_nerf.py --config configs/lego.txt --ft_path logs/paper_lego/011.tar --render_only --render_test
cd nerf++-ours
Training
CUDA_VISIBLE_DEVICES=0 python ddp_train_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt
Testing
CUDA_VISIBLE_DEVICES=0 python ddp_test_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt --render_splits test
cd plenoxels-ours/opt
Training
CUDA_VISIBLE_DEVICES=0 python opt.py data/nerf_synthetic/lego -t ckpt/paper_lego -c configs/syn.json
Testing
CUDA_VISIBLE_DEVICES=0 python render_imgs.py ckpt/paper_lego/ckpt.npz data/nerf_synthetic/lego
cd ngp-ours
Training & Testing
CUDA_VISIBLE_DEVICES=0 python python main_nerf.py data/TanksAndTemple/Family --workspace log/tnt/Family -O --bound 1.0 --scale 0.33 --dt_gamma 0
@article{zhang2023fast,
title={Fast Learning Radiance Fields by Shooting Much Fewer Rays},
author={Zhang, Wenyuan and Xing, Ruofan and Zeng, Yunfan and Liu, Yu-Shen and Shi, Kanle and Han, Zhizhong},
journal={IEEE Transactions on Image Processing},
volume={32},
pages={2703--2718},
year={2023},
publisher={IEEE}
}