Implementation of Conor McBride's First-order unification by structural recursion in Agda.
I'm personally using this implement proof search in Agda, but should you wish to use it directly you can do so as follows:
-- provide a datatype for the symbols and define a decidable equality
data Sym : ℕ → Set where
ADD : Sym 3
SUC : Sym 1
ZERO : Sym 0
decEqSym : ∀ {k} (f g : Sym k) → Dec (f ≡ g)
decEqSym ADD ADD = yes refl
decEqSym SUC SUC = yes refl
decEqSym ZERO ZERO = yes refl
-- import and open the unification module
open import Unification Sym decEqSym
It uses version 0.7 of the Agda "Standard Library".