code implements for paper Improving Both Domain Robustness and Domain Adaptability in Machine Translation(COLING 2022), the code is based on public code: fairseq, we provide the implement of different classifier, and word-level domain mixing.
Requirements
- Fairseq (v0.6.0)
- Pytorch
- all requirements are shown in
requirements.txt
, you can install usingpip install -r requirements.txt
Pipeline
To reproduce the results of our experiments, please clean your OPUS corpus first, especially de-duplicate the corpus (see more details in Appendix of the paper).
-
Train a domain classifier based on BERT/ CNN etc in
domain_classification/Bert_classfier.py
ordomain_classification/main.py
-
Score the sentence to represent the domain similarity with general domains:
python meta_score_prepare.py \ --num_labels 11 \ --device_id 7 \ --model_name bert-base-uncased \ --input_path $YOUR_INPUT_PATH \ --cls_data $YOUR_CLASSIFICATION_PATH \ --out_data $YOUR_OUTPUT_PATH \ --script_path $SCRIPT_PATH
-
Run baseline systems using fairseq, Meta-MT and Meta-curriculum.
-
code related to the word-lvel domain mixing is in
word_moudles
, and please use the following command to reproduce the results in our paper:python -u $code_dir/meta_ws_adapt_training.py $DARA_DIR \ --train-subset meta-train-spm $META_DEV \ --damethod bayesian \ --arch transformer_da_bayes_iwslt_de_en \ --criterion $CRITERION $BASELINE \ --domains $DOMAINS --max-tokens 1 \ --user-dir $user_dir \ --domain-nums 5 \ --translation-task en2de \ --source-lang en --target-lang de \ --is-curriculum --split-by-cl --distributed-world-size $GPUS \ --required-batch-size-multiple 1 \ --tensorboard-logdir $TF_BOARD \ --optimizer $OPTIMIZER --lr $META_LR $DO_SAVE \ --save-dir $PT_OUTPUT_DIR --save-interval-updates $SAVEINTERVALUPDATES \ --max-epoch 20 \ --skip-invalid-size-inputs-valid-test \ --flush-secs 1 --train-percentage 0.99 --restore-file $PRE_TRAIN --log-format json \ --- --task word_adapt_new --is-curriculum \ --train-subset support --test-subset query --valid-subset dev_sub \ --max-tokens 2000 --skip-invalid-size-inputs-valid-test \ --update-freq 10000 \ --domain-nums 5 \ --translation-task en2de \ --distributed-world-size 1 --max-epoch 1 --optimizer adam \ --damethod bayesian --criterion cross_entropy_da \ --lr 5e-05 --lr-scheduler inverse_sqrt --no-save \ --support-tokens 8000 --query-tokens 16000 \ --source-lang en --label-smoothing 0.1 \ --adam-betas '(0.9, 0.98)' --warmup-updates 4000 \ --warmup-init-lr '1e-07' --weight-decay 0.0001 \ --target-lang de \ --user-dir $user_dir
If you find our paper useful, please kindly cite our paper. Thanks!
@inproceedings{lai-etal-2022-improving-domain,
title = "Improving Both Domain Robustness and Domain Adaptability in Machine Translation",
author = "Lai, Wen and
Libovick{\'y}, Jind{\v{r}}ich and
Fraser, Alexander",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.461",
pages = "5191--5204",
}
If you have any questions about our paper, please feel convenient to let me know through email: lavine@cis.lmu.de