Cannot convert object of class LayerInstanceLayerggprotogg into a grob?
Closed this issue · 0 comments
marwa38 commented
Hello
I am importing those 2 plots into R so that I can plot_grid()
them together in one figure.
my codes are as follows
p1 <- draw_image("tables/lefseConda_barPlot.png")
p2 <- draw_image("tables/lefseConda_cladogram.png")
plot_grid(p1,
p2,
labels = c("A", "B"),
label_size = 12)
and I am getting this warning and I blank figure (attached)
Warning messages:
1: In as_grob.default(plot) :
Cannot convert object of class LayerInstanceLayerggprotogg into a grob.
2: In as_grob.default(plot) :
Cannot convert object of class LayerInstanceLayerggprotogg into a grob.
# R version 4.1.0 (2021-05-18)
# Platform: x86_64-conda-linux-gnu (64-bit)
# Running under: Ubuntu 20.04.4 LTS
#
# Matrix products: default
# BLAS/LAPACK: /home/r01mt19/.conda/envs/updatedR/lib/libopenblasp-r0.3.18.so
#
# locale:
# [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
# [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8 LC_PAPER=en_GB.UTF-8 LC_NAME=C
# [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] magick_2.7.3 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
# [5] purrr_0.3.4 readr_2.1.1 tidyr_1.1.4 tibble_3.1.6
# [9] ggplot2_3.3.5 tidyverse_1.3.1 cowplot_1.1.1 microbiomeMarker_1.0.2
#
# loaded via a namespace (and not attached):
# [1] readxl_1.3.1 backports_1.4.1 circlize_0.4.14
# [4] plyr_1.8.6 igraph_1.2.10 lazyeval_0.2.2
# [7] splines_4.1.0 BiocParallel_1.26.0 GenomeInfoDb_1.28.0
# [10] digest_0.6.29 foreach_1.5.1 yulab.utils_0.0.4
# [13] fansi_0.4.2 magrittr_2.0.1 memoise_2.0.1
# [16] cluster_2.1.2 doParallel_1.0.17 tzdb_0.2.0
# [19] limma_3.50.0 ComplexHeatmap_2.10.0 Biostrings_2.60.0
# [22] annotate_1.70.0 modelr_0.1.8 RcppParallel_5.1.5
# [25] matrixStats_0.61.0 metagenomeSeq_1.36.0 jpeg_0.1-9
# [28] colorspace_2.0-2 rvest_1.0.2 blob_1.2.2
# [31] haven_2.4.3 rbibutils_2.2.7 crayon_1.4.2
# [34] RCurl_1.98-1.5 jsonlite_1.7.2 genefilter_1.74.0
# [37] dada2_1.20.0 survival_3.2-13 iterators_1.0.13
# [40] ape_5.6 glue_1.6.0 gtable_0.3.0
# [43] zlibbioc_1.38.0 XVector_0.32.0 GetoptLong_1.0.5
# [46] DelayedArray_0.18.0 phyloseq_1.36.0 Rhdf5lib_1.14.0
# [49] shape_1.4.6 BiocGenerics_0.38.0 scales_1.1.1
# [52] DBI_1.1.2 Rcpp_1.0.7 plotROC_2.2.1
# [55] xtable_1.8-4 clue_0.3-60 gridGraphics_0.5-1
# [58] tidytree_0.3.9 bit_4.0.4 stats4_4.1.0
# [61] glmnet_4.1-2 httr_1.4.2 gplots_3.1.1
# [64] RColorBrewer_1.1-2 ellipsis_0.3.2 farver_2.1.0
# [67] pkgconfig_2.0.3 XML_3.99-0.8 dbplyr_2.1.1
# [70] locfit_1.5-9.4 utf8_1.2.2 labeling_0.4.2
# [73] ggplotify_0.1.0 tidyselect_1.1.1 rlang_0.4.12
# [76] reshape2_1.4.4 AnnotationDbi_1.54.0 cellranger_1.1.0
# [79] munsell_0.5.0 tools_4.1.0 cachem_1.0.6
# [82] cli_3.1.0 generics_0.1.1 RSQLite_2.2.8
# [85] ade4_1.7-18 broom_0.7.11 biomformat_1.20.0
# [88] fastmap_1.1.0 yaml_2.2.1 ggtree_3.2.1
# [91] fs_1.5.2 bit64_4.0.5 caTools_1.18.2
# [94] KEGGREST_1.32.0