./
├── geometry.py
├── test_lines.py
├── render_depth.py
├── renderer.py
├── csv_files\
├── speedplus_gan\
├── speedplus_small\
├── synthetic_mask\
├── neus_meshes\
The following data can be downloaded at https://drive.google.com/drive/folders/1WVr-6mEQii9nR6J4Exs31q22q3BqNybN?usp=share_link
submission files
./csv_files
├── lightbox_ex_submission_1953_2022_03_30_21_34_58.csv
└── sunlamp_ex_submission_1953_2022_03_30_02_38_14.csv
Target-like source images, i.e., transferred source images into target domains using CycleGan.
./speedplus_gan
├── fake_lightbox [59961 entries exceeds filelimit, not opening dir]
└── fake_sunlamp_full [59961 entries exceeds filelimit, not opening dir]
Resized original images, 640
./speedplus_small
├── camera.json
├── lightbox
│ ├── images
│ └── test.json
├── sunlamp
│ ├── images
│ └── test.json
└── synthetic
├── images
├── train.json
└── validation.json
satellite masks
meshs of tango
neus_meshes
├── mesh1500.ply
├── mesh1500_simple.ply
├── mesh1500_simple_v2.ply
├── mesh1500_simple_v3.ply
├── mesh20000.obj
└── mesh.ply
basic geometries, including landmarks, wireframes
render the .obj file given a pose
basic functions for visualization
a simple demo to show 2D landmarks and wireframes given an input image
If this project helps you, please cite our papers.
@article{Wang2022RevisitingMS,
title={Revisiting Monocular Satellite Pose Estimation With Transformer},
author={Zi Wang and Zhuo Zhang and Xiaoliang Sun and Zhang Li and Qifeng Yu},
journal={IEEE Transactions on Aerospace and Electronic Systems},
year={2022},
volume={58},
pages={4279-4294},
url={https://api.semanticscholar.org/CorpusID:247786112}
}
@article{Wang2023BridgingDG,
author={Wang, Zi and Chen, Minglin and Guo, Yulan and Li, Zhang and Yu, Qifeng},
journal={IEEE Transactions on Aerospace and Electronic Systems},
title={Bridging the Domain Gap in Satellite Pose Estimation: A Self-Training Approach Based on Geometrical Constraints},
year={2023},
volume={},
number={},
pages={1-14},
doi={10.1109/TAES.2023.3250385}}