/TavernAI-extras

Unofficial extensions for TavernAI

Primary LanguagePythonThe UnlicenseUnlicense

TavernAI - Extras

What is this

A set of APIs for various SillyTavern extensions.

You need to run the lastest version of my TavernAI fork. Grab it here: Direct link to ZIP, Git repository

All modules require at least 6 Gb of VRAM to run. With Stable Diffusion disabled, it will probably fit in 4 Gb. Alternatively, everything could also be run on the CPU.

Try on Colab (runs KoboldAI backend and TavernAI Extras server alongside): Open In Colab

Colab link: https://colab.research.google.com/github/Cohee1207/SillyTavern/blob/main/colab/GPU.ipynb

Alternative link (legacy, not endorsed): https://colab.research.google.com/github/Cohee1207/TavernAI-extras/blob/main/colab/GPU.ipynb

How to run

IMPORTANT!

Default requirements.txt contains only basic packages for text processing

If you want to use the most advanced features (like Stable Diffusion, TTS), change that to requirements-complete.txt in commands below. See Modules section for more details.

You must specify a list of module names to be run in the --enable-modules command (caption provided as an example). See Modules section.

☁️ Colab

  • Open colab link
  • Select desired "extra" options and start the cell
  • Wait for it to finish
  • Get an API URL link from colab output under the ### TavernAI Extensions LINK ### title
  • Start TavernAI with extensions support: set enableExtensions to true in config.conf
  • Navigate to TavernAI settings and put in an API URL and tap "Connect" to load the extensions

💻 Locally

Option 1 - Conda (recommended) 🐍

conda create -n extras
conda activate extras
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 git -c pytorch -c nvidia
git clone https://github.com/Cohee1207/TavernAI-extras
cd TavernAI-extras
pip install -r requirements.txt
  • Run python server.py --enable-modules=caption
  • Get the API URL. Defaults to http://localhost:5100 if you run locally.
  • Start TavernAI with extensions support: set enableExtensions to true in config.conf
  • Navigate to TavernAI settings and put in an API URL and tap "Connect" to load the extensions
  • To run again, simply activate the environment and run the script:
conda activate extras
python server.py

Option 2 - Vanilla 🍦

git clone https://github.com/Cohee1207/TavernAI-extras
cd TavernAI-extras
  • Run pip install -r requirements.txt
  • Run python server.py --enable-modules=caption
  • Get the API URL. Defaults to http://localhost:5100 if you run locally.
  • Start TavernAI with extensions support: set enableExtensions to true in config.conf
  • Navigate to TavernAI extensions menu and put in an API URL and tap "Connect" to load the extensions

Modules

Name Description Included in default requirements.txt
caption Image captioning ✔️ Yes
summarize Text summarization ✔️ Yes
classify Text sentiment classification ✔️ Yes
keywords Text key phrases extraction ✔️ Yes
prompt SD prompt generation from text ✔️ Yes
sd Stable Diffusion image generation ❌ No

API Endpoints

Get UI extensions list

GET /api/extensions

Input

None

Output

{"extensions":[{"metadata":{"css":"file.css","display_name":"human-friendly name","js":"file.js","requires":["module_id"]},"name":"extension_name"}]}

Get UI extension JS script

GET /api/script/<name>

Input

Extension name in a route

Output

File content

Get UI extension CSS stylesheet

GET /api/style/<name>

Input

Extension name in a route

Output

File content

Get UI extension static asset

GET /api/asset/<name>/<asset>

Input

Extension name and assert name in a route

Output

File content

Image captioning

POST /api/caption

Input

{ "image": "base64 encoded image" }

Output

{ "caption": "caption of the posted image" }

Text summarization

POST /api/summarize

Input

{ "text": "text to be summarize", "params": {} }

Output

{ "summary": "summarized text" }

Optional: params object for control over summarization:

Name Default value
temperature 1.0
repetition_penalty 1.0
max_length 500
min_length 200
length_penalty 1.5
bad_words ["\n", '"', "*", "[", "]", "{", "}", ":", "(", ")", "<", ">"]

Text sentiment classification

POST /api/classify

Input

{ "text": "text to classify sentiment of" }

Output

{
    "classification": [
        {
            "label": "joy",
            "score": 1.0
        },
        {
            "label": "anger",
            "score": 0.7
        },
        {
            "label": "love",
            "score": 0.6
        },
        {
            "label": "sadness",
            "score": 0.5
        },
        {
            "label": "fear",
            "score": 0.4
        },
        {
            "label": "surprise",
            "score": 0.3
        }
    ]
}

NOTES

  1. Sorted by descending score order
  2. List of categories defined by the summarization model
  3. Value range from 0.0 to 1.0

Key phrase extraction

POST /api/keywords

Input

{ "text": "text to be scanned for key phrases" }

Output

{
    "keywords": [
        "array of",
        "extracted",
        "keywords",
    ]
}

Stable Diffusion prompt generation

POST /api/prompt

Input

{ "name": "character name (optional)", "text": "textual summary of a character" }

Output

{ "prompts": [ "array of generated prompts" ] }

Stable Diffusion image generation

POST /api/image

Input

{ "prompt": "prompt to be generated" }

Output

{ "image": "base64 encoded image" }

Additional options

Flag Description
--enable-modules Required option. Provide a list of enabled modules.
Expects a comma-separated list of module names. See Modules
Example: --enable-modules=caption,sd
--port Specify the port on which the application is hosted. Default: 5100
--listen Host the app on the local network
--share Share the app on CloudFlare tunnel
--cpu Run the models on the CPU instead of CUDA
--summarization-model Load a custom summarization model.
Expects a HuggingFace model ID.
Default: Qiliang/bart-large-cnn-samsum-ChatGPT_v3
--classification-model Load a custom sentiment classification model.
Expects a HuggingFace model ID.
Default (6 emotions): bhadresh-savani/distilbert-base-uncased-emotion
Other solid option is (28 emotions): joeddav/distilbert-base-uncased-go-emotions-student
--captioning-model Load a custom captioning model.
Expects a HuggingFace model ID.
Default: Salesforce/blip-image-captioning-large
--keyphrase-model Load a custom key phrase extraction model.
Expects a HuggingFace model ID.
Default: ml6team/keyphrase-extraction-distilbert-inspec
--prompt-model Load a custom prompt generation model.
Expects a HuggingFace model ID.
Default: FredZhang7/anime-anything-promptgen-v2
--sd-model Load a custom Stable Diffusion image generation model.
Expects a HuggingFace model ID.
Default: ckpt/anything-v4.5-vae-swapped
Must have VAE pre-baked in PyTorch format or the output will look drab!
--sd-cpu Force the Stable Diffusion generation pipeline to run on the CPU.
SLOW!