wozardry
is a multi-purpose tool for manipulating .woz
disk images. It can
validate file structure, edit metadata, import and export metadata in JSON
format, remove unused tracks, and provides a programmatic interface to "read"
bits and nibbles from a disk image. It supports both WOZ 1.0 and WOZ 2.0 files
and can convert files from one version to the other.
wozardry
is written in Python 3.
It requires bitarray, which can be installed thusly:
$ pip3 install -U bitarray
(Developers who wish to run the test suite should also install the pytest
module with pip3 install -U pytest
)
wozardry is primarily designed to be used on the command line to directly
manipulate .woz
disk images in place. It supports multiple commands, which are
listed in the wozardry -h
output.
This command verifies the file structure and metadata of a .woz
disk image.
It produces no output unless a problem is found.
Sample usage:
$ wozardry verify "WOZ 2.0/DOS 3.3 System Master.woz"
Tip: you can download a collection of .woz test images.
The verify
command does not "read" the data on the disk like an emulator
would. It merely verifies the structure of the .woz
file itself and applies a
few sanity checks on the embedded metadata (if any). The disk may or may not
boot in an emulator. It may not pass its own copy protection checks. It may not
have the data you expected, or any data at all. The verify
command can not
answer those questions.
Prints all available information and metadata in a .woz
disk image.
Sample usage:
$ wozardry dump "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz"
TMAP: Track 0.00 TRKS 0
TMAP: Track 0.25 TRKS 0
TMAP: Track 0.75 TRKS 1
TMAP: Track 1.00 TRKS 1
.
. [many lines elided]
.
TMAP: Track 33.75 TRKS 34
TMAP: Track 34.00 TRKS 34
TMAP: Track 34.25 TRKS 34
META: language: English
META: publisher: Broderbund
META: developer:
META: side: Disk 1, Side A
META: copyright: 1987
META: requires_ram: 128K
META: subtitle:
META: image_date: 2018-01-15T01:30:53.025Z
META: title: Wings of Fury
META: version:
META: contributor: DiskBlitz
META: notes:
META: side_name:
META: requires_machine: 2e
META: 2c
META: 2e+
META: 2gs
INFO: File format version: 2
INFO: Disk type: 5.25-inch (140K)
INFO: Write protected: yes
INFO: Tracks synchronized: yes
INFO: Weakbits cleaned: yes
INFO: Creator: Applesauce v1.1
INFO: Boot sector format: 1 (16-sector)
INFO: Optimal bit timing: 32 (standard)
INFO: Compatible hardware: 2e
INFO: 2c
INFO: 2e+
INFO: 2gs
INFO: Required RAM: 128K
INFO: Largest track: 13 blocks
The TMAP
section (stands for "track map") shows which tracks are included in
the disk image. As you can see from the above sample, the same bitstream data
can be assigned to multiple tracks, usually adjacent quarter tracks. Each
bitstream is stored only once in the .woz
file.
The META
section shows any embedded metadata, such as copyright and
version. This section is optional; not all .woz
files will have the same
metadata fields, and some may have none at all.
The INFO
section shows information that emulators or other programs might need
to know, such as the boot sector format (13- or 16-sector, or both) and whether
the disk is write protected. All INFO
fields are required and are included in
every .woz
file.
The output of the dump
command is designed to by grep-able, if you're into
that kind of thing.
$ wozardry dump "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz" | grep "^INFO"
will show just the INFO
section.
Tip: the .woz specification lists the standard metadata fields and the acceptable values of all info fields.
This command lets you modify any information or metadata field in a .woz
file. This is where the fun(*) starts.
(*) not guaranteed, actual fun may vary
The inline help is a good overview.
usage: wozardry edit [-h] [-i INFO] [-m META] file
Edit information and metadata in a .woz disk image
positional arguments:
file .woz disk image (modified in place)
optional arguments:
-h, --help show this help message and exit
-i INFO, --info INFO change information field. INFO format is "key:value".
Acceptable keys are disk_type, write_protected,
synchronized, cleaned, creator, version. Additional
keys for WOZ2 files are disk_sides, required_ram,
boot_sector_format, compatible_hardware,
optimal_bit_timing. Other keys are ignored. For
boolean fields, use "1" or "true" or "yes" for true,
"0" or "false" or "no" for false.
-m META, --meta META change metadata field. META format is "key:value".
Standard keys are title, subtitle, publisher,
developer, copyright, version, language, requires_ram,
requires_machine, notes, side, side_name, contributor,
image_date. Other keys are allowed.
Tips:
- Use repeated flags to edit multiple fields at once.
- Use "key:" with no value to delete a metadata field.
- Keys are case-sensitive.
- Some values have format restrictions; read the .woz specification.
Let's look at some examples.
Working with this same "Wings of Fury" disk image, let's give the game author
his due by adding the developer
metadata field:
$ wozardry edit -m "developer:Steve Waldo" "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz"
Metadata fields are arbitrary; there is a standard set listed in the .woz specification, but you can add your own.
$ wozardry edit -m "genre:action" -m "perspective:side view" "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz"
You can use a similar syntax to remove metadata fields that don't apply to this disk.
$ wozardry edit -m "version:" -m "notes:" -m "side_name:" -m "subtitle:" "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz"
Now let's look at that metadata section again:
$ wozardry dump "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz" | grep "^META"
META: language: English
META: publisher: Broderbund
META: developer: Steve Waldo
META: side: Disk 1, Side A
META: copyright: 1987
META: requires_ram: 128K
META: image_date: 2018-01-15T01:30:53.025Z
META: title: Wings of Fury
META: contributor: DiskBlitz
META: requires_machine: 2e
META: 2c
META: 2e+
META: 2gs
META: genre: action
META: perspective: side view
You can modify INFO
fields using a similar syntax (-i
instead of -m
), but
be aware that INFO
fields are highly constrained, and incorrect values can
have noticeable effects in emulators. wozardry
will reject any values that are
nonsensical or out of range, but even in-range values can render the disk image
unbootable. For example, the "optimal bit timing" field specifies the rate at
which bits appear in the floppy drive data latch; if the rate is not what the
disk's low-level RWTS code is expecting, the disk may be unable to read itself.
Nonetheless, here are some examples of changing INFO
fields. To tell emulators
that a disk is not write-protected, set the write_protected
field to no
,
false
, or 0
.
$ wozardry edit -i "write_protected:no" "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz"
To tell emulators that the disk only runs on certain Apple II models, set the
compatible_hardware
field with a pipe-separated list. (Values may appear in
any order. See kRequiresMachine
in the wozardry
source code for all the
acceptable values.)
$ wozardry edit -i "compatible_hardware:2e|2e+|2c|2gs" "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz"
As of this writing, the .woz
specification has undergone one major revision,
which changed the internal structure of a .woz
file and added several new
INFO
fields. Both file formats use the .woz
file extension; they are
distinguished by magic bytes (WOZ1
vs. WOZ2
) within the file.
Let's say you have an older WOZ1
file, like this one from the WOZ 1.0
directory of the official test images collection:
$ wozardry dump "WOZ 1.0/Wings of Fury - Disk 1, Side A.woz" | grep "^INFO"
INFO: File format version: 1
INFO: Disk type: 5.25-inch (140K)
INFO: Write protected: yes
INFO: Tracks synchronized: yes
INFO: Weakbits cleaned: yes
INFO: Creator: Applesauce v0.29
The "file format version" confirms this is a WOZ1
file. To convert it to a
WOZ2
file, set the version
field to 2
.
$ wozardry edit -i "version:2" "WOZ 1.0/Wings of Fury - Disk 1, Side A.woz"
$ wozardry dump "WOZ 1.0/Wings of Fury - Disk 1, Side A.woz" | grep "^INFO"
INFO: File format version: 2
INFO: Disk type: 5.25-inch (140K)
INFO: Write protected: yes
INFO: Tracks synchronized: yes
INFO: Weakbits cleaned: yes
INFO: Creator: Applesauce v0.29
INFO: Boot sector format: 0 (unknown)
INFO: Optimal bit timing: 32 (standard)
INFO: Compatible hardware: unknown
INFO: Required RAM: unknown
INFO: Largest track: 13 blocks
All the new (v2-specific) INFO
fields are initialized with default
values. Existing fields like the write-protected flag are retained. ("Largest
track" is a calculated field and can not be set directly.)
These commands allow you to access the information and metadata in a .woz
file
in JSON
format.
$ wozardry export "WOZ 2.0/Wings of Fury - Disk 1, Side A.woz"
{
"woz": {
"info": {
"version": 2,
"disk_type": 1,
"write_protected": true,
"synchronized": true,
"cleaned": true,
"creator": "Applesauce v1.1",
"disk_sides": 1,
"boot_sector_format": 1,
"optimal_bit_timing": 32,
"compatible_hardware": [
"2e",
"2c",
"2e+",
"2gs"
],
"required_ram": 128,
"largest_track": 13
},
"meta": {
"language": "English",
"publisher": "Broderbund",
"developer": [
""
],
"side": "Disk 1, Side A",
"copyright": "1987",
"requires_ram": "128K",
"subtitle": [
""
],
"image_date": "2018-01-15T01:30:53.025Z",
"title": "Wings of Fury",
"version": [
""
],
"contributor": "DiskBlitz",
"notes": [
""
],
"side_name": [
""
],
"requires_machine": [
"2e",
"2c",
"2e+",
"2gs"
]
}
}
}
You can pipe the output of the export
command to the import
command to copy
metadata from one .woz
file to another.
$ wozardry export game-side-a.woz | wozardry import game-side-b.woz
Technically, this merges metadata. All metadata fields in game-side-a.woz
will
be copied to game-side-b.woz
, overwriting any existing values for those
fields. But if game-side-b.woz
already had additional metadata fields that
were not present in game-side-a.woz
, those will be retained.
Tip: a2rchery is a tool to manipulate
.a2r
flux images. These .a2r
files can also have embedded metadata, just
like .woz
files. And guess what! a2rchery
also has import
and export
commands, just like wozardry
. You see where this is going.
$ wozardry export game.woz | a2rchery import game.a2r
This command allow you to remove one or more tracks from a .woz
disk image.
Tracks are specified in quarter tracks, in base 10 (not base 16). Multiple tracks can be removed at once.
$ wozardry remove -t0.25 -t0.5 -t0.75 -t1 -t1.25 -t35 "Gamma Goblins.woz"
Note: tracks are stored as indices in the TMAP
chunk, and multiple tracks
can refer to the same bitstream (stored in the TRKS
chunk). If you remove all
tracks that refer to a bitstream, the bitstream will be removed from the TRKS
chunk and all the indices in the TMAP
chunk will be adjusted accordingly.
This represents a single WOZ disk image. You can create it from scratch, load it from a file on disk, or parse it from a bytestream in memory.
>>> import wozardry
>>> woz_image = wozardry.WozDiskImage()
>>> woz_image.woz_version
2
This newly created woz_image
already has an info
dictionary with all the
required fields in the INFO
chunk.
>>> from pprint import pprint
>>> pprint(woz_image.info)
OrderedDict([('version', 2),
('disk_type', 1),
('write_protected', False),
('synchronized', False),
('cleaned', False),
('creator', 'wozardry 2.0-beta'),
('disk_sides', 1),
('boot_sector_format', 0),
('optimal_bit_timing', 32),
('compatible_hardware', []),
('required_ram', 0)])
>>> woz_image.info["compatible_hardware"] = ["2", "2+"]
>>> woz_image.info["compatible_hardware"]
['2', '2+']
It also has an empty meta
dictionary for metadata.
>>> pprint(woz_image.meta)
OrderedDict()
>>> woz_image.meta["copyright"] = "1981"
>>> woz_image.meta["developer"] = "Chuckles"
>>> pprint(woz_image.meta)
OrderedDict([('copyright', '1981'),
('developer', 'Chuckles')])
To load a .woz
disk image from a file (or any file-like object), open the file
and pass it to the WozDiskImage
constructor. Be sure to open files in binary
mode.
>>> with open("Wings of Fury.woz", "rb") as fp:
... woz_image = wozardry.WozDiskImage(fp)
To save a file, serialize the WozDiskImage
object with the bytes()
method
and write that to disk. Be sure to open files in binary mode.
>>> with open("Wings of Fury.woz", "wb") as fp:
... fp.write(bytes(woz_image))
A .woz
disk image usually contains multiple tracks of data, otherwise what's
the point, right? Each track is accessed by the Track
interface.
The WozDiskImage.seek()
returns a Track
object that contains that track's
data (or None
if that track is not in the disk image).
Tip: the seek()
method takes a logical track number, which could be a
quarter track or half track. To get the data on track 1.5, call seek(1.5)
.
In this example, we load a .woz
image from disk and seek to track 0:
>>> with open("Wings of Fury.woz", "rb") as fp:
... woz_image = wozardry.WozDiskImage(fp)
>>> tr = woz_image.seek(0)
>>> tr
<wozardry.Track object at 0x108ccf3c8>
Now we can access the bitstream of the track. The raw bitstream is in tr.bits
,
but you probably want to use one of these convenience methods instead.
To search the track for a specific nibble sequence, use the find()
method. It
returns True
if the nibble sequence was found, or False
otherwise.
>>> tr.find(bytes.fromhex("D5 AA 96"))
True
The Track
object maintains state of where it is within the bitstream
(tr.bit_index
), including wrapping around to the beginning if it reaches the
end (tr.revolutions
). After finding that D5 AA 96
nibble sequence with the
find()
method, we can read the next nibbles in the bitstream with the
nibble()
generator.
>>> hex(next(tr.nibble()))
'0xff'
>>> hex(next(tr.nibble()))
'0xfe'
>>> hex(next(tr.nibble()))
'0xaa'
>>> hex(next(tr.nibble()))
'0xaa'
>>> hex(next(tr.nibble()))
'0xab'
>>> hex(next(tr.nibble()))
'0xaa'
Tip: the nibble()
generator returns nibbles like a real disk controller.
0
bits between nibbles are ignored, so the high bit of the returned nibble is
always 1
. The find()
method uses the nibble()
generator internally, so it
also ignores 0
bits between nibbles.
If you want to read individual bits from the current position in the bitstream,
use the bit()
generator.
>>> next(tr.bit())
1
>>> next(tr.bit())
1
>>> next(tr.bit())
1
>>> next(tr.bit())
1
>>> next(tr.bit())
1
>>> next(tr.bit())
1
>>> next(tr.bit())
1
>>> next(tr.bit())
0
Unlike a real disk controller, you can move backwards in the bitstream, allowing you to speculatively look at bits then rewind as if you hadn't seen them yet.
Let's rewind as if we hadn't just read those 8 individual bits, then read them as a nibble:
>>> tr.rewind(8)
>>> hex(next(tr.nibble()))
'0xfe'