This package implements Latent Dirichlet Allocation fitted via loopy belief propagation as described in Zeng et al. Learning topic models using belief propagation. 2012, IEEE Transations on pattern analysis and machine intelligence.
The package is available under a GPL-v3 license.
You can install the package using
pip install https://github.com/wkopp/bplda/archive/master.zip
import numpy as np
from bplda import BeliefProbLDA
# toy data (10 documents, vocabulary size=5)
X = np.zeros((5, 10))
X[:3,:5]=1
X[-3:,-5:]=1
model = LDA(3, niter=10, seed=10)
# fit and get document-topic matrix
doc_top = model.fit_transform(minitest)
# access word-topic matrix
model.word_topic_
# compute the log-likelihood score
model.score(minitest)
model.loglikeli_