毕业设计 基于ResNet的人体热舒适姿态检测研究
- tensorflow-gpu==1.12.0
- keras==2.2.4
- tqdm==4.43.0
- opencv-python==4.2.0.32
from train import SPENetTrain
spe = SPENetTrain(layers=8, joints=17, lr=1e-4, pretrained_weights=None)
spe.train(batch_size=2)
from train import SPENetTrain
spe = SPENetTrain(layers=8, joints=17, lr=1e-4, pretrained_weights=“weights/SPENet-8-17.h5”)
spe.train(batch_size=2)
from predict import SPENetPredict
from model import SPENet
# 导入训练好的权重
model = SPENet(layers=8)
model.load_weights("weights/SPENet-8-17.h5")
p = SPENetPredict(model)
p.predict_skeleton("test.jpg", save_folder="outputs", save_name="test")
from model import SPENet
from utils import TCPDataLoader
# 导入训练好的权重
model = SPENet(layers=8)
model.load_weights("weights/SPENet-8-17.h5")
t = TCPDataLoader()
# 要准备训练集和验证集
t.prepare(model)
from utils import TCPDataLoader
t = TCPDataLoader()
# visualize输入:json路径 对应视频帧文件夹 第几帧
t.visualize()
from train import TCPNetTrain
t = TCPNetTrain(units=256, lr=2e-5, pretrained_weights=None)
t.train(batch_size=64)