/DeepPreNCE

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

DeepPreNCE

  1. install CONDA virtual environment.
    $ conda env create -f ./env/conda_env_venv2.yaml 
    $ conda env create -f ./env/conda_env_ncl.yaml
  1. edit main script.

    • For default run (single-input): edit main_run_def.bash
    • For multi-input run: edit main_run_multi.bash
  2. run main script.

    $ ./main_run_def.bash   # for default run
    $ ./main_run_multi.bash # for multi-input run
  • Files

    • deep_model.py: contains deep-learning based rain rate nowcasting models
    • deep_utils.py: contains utilities for data processing and loss functions, and etc.
    • main_run_def.bash: main script for 'default (single-input)' run
    • main_run_multi.bash: main script for 'multi-input' run
    • sample_list_2012-2019_JJAS_RDR_avg1h_1hrs.csv: list for non-trivial rainfall cases during June-September, 2012-2019 over the Korean Peninsula
    • setting.txt: templete file for recording the settings of each experiment
    • step_00_fit_def.py: program for training a model using single-input
    • step_00_fit_multi.py: program for training a model using multi-input
    • step_01_pred_def.py: program for predicting a rain rate distribution using a model trained with single-input
    • step_01_pred_multi.py: program for predicting a rain rate distribution using a model trained with multi-input
    • step_02_draw_results.ncl: program that draws the predicted rain rate distributions through step_01
  • Directories

    • ./env: contains conda environments
    • ./data: contains preprocessed radar rainrate data
    • ./output/ckpt: output directories for model checkpoint
    • ./output/log: output directories for log (used by tensorboard)
    • ./output/image: output directories for resulted images (outputs from 'step_02')
    • ./output/script: output directories for used scripts
    • ./output/predict: output directories for prediction (outputs from 'step01')