An innovative computer vision project utilizing leaf image analysis for disease recognition.
# Download image dataset and generate distribution chart image
python 01.Distribution.py apple grape
# Augment unbalanced image dataset
python 02.Augmentation.py
Auto image augmentation...
Augmenting "Apple" images...
========================
Summary of augmentation:
========================
/Users/woolim/Documents/leaffliction/images/Apple_scab: 629 -> 1640
/Users/woolim/Documents/leaffliction/images/Apple_healthy: 1640 -> 1640
/Users/woolim/Documents/leaffliction/images/Apple_rust: 275 -> 1640
/Users/woolim/Documents/leaffliction/images/Apple_Black_rot: 620 -> 1640
Augmenting "Grape" images...
========================
Summary of augmentation:
========================
/Users/woolim/Documents/leaffliction/images/Grape_Esca: 1382 -> 1382
/Users/woolim/Documents/leaffliction/images/Grape_healthy: 422 -> 1382
/Users/woolim/Documents/leaffliction/images/Grape_Black_rot: 1178 -> 1382
/Users/woolim/Documents/leaffliction/images/Grape_spot: 1075 -> 1382
Check image distributions are well balanced
python 01.Distribution.py apple grape
apple before
apple after
grape before
grape after
Save transformed image plot
python 03.Transformation.py -src [SRC_PATH] -dst [DST_PATH]
image transformed
image transformed
python predict.py [image_path]
Predict all images and check prediction accuracy.
python 04.Classification.py
Validation Progress: 100%|███████████████████████████████████████████| 10/10 [01:10<00:00, 7.01s/it]
Accuracy of the model on the validation set: 92.31%
tensorboard --logdir runs
Train loss
Train vs Validation Loss