Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift
- Python 3.6
- CUDA 9.2
- cuDNN 7.6
- HCI 4D Light Field Dataset
For the installation I recommend a python venv.
git clone git@github.com:titus-leistner/epi-shift.git
cd epi-shift/
python3 -m venv .
source bin/activate
pip install -r requirements.txt
To train the model, run
python train.py --tset path/to/hci4d/dataset/additional --vset path/to/hci4d/dataset/training --bsz [batch size]
Run python train.py --help
to see all options.
To perform inference on a dataset, run
python infer.py --dset path/to/hci4d/dataset/test --prms path/to/params.pt
The disparity maps are saved as png and pfm files to ./out
. Please download params.pt seperately.
The paper was published at 3DV 2019 with an oral presentation (project page).
@inproceedings{Leistner2019,
title = {Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift},
author = {Leistner, Titus and Schilling, Hendrik and Mackowiak, Radek and Gumhold, Stefan and Rother, Carsten},
booktitle = {International Conference on 3D Vision (3DV)},
doi = {10.1109/3DV.2019.00036},
month = {sep},
year = {2019},
}