use openai whisper
pip install git+https://github.com/openai/whisper.git
choco install ffmpeg
Path:
C:\users\Ping\.cache\whisper
Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
---|---|---|---|---|---|
tiny | 39 M | tiny.en |
tiny |
~1 GB | ~32x |
base | 74 M | base.en |
base |
~1 GB | ~16x |
small | 244 M | small.en |
small |
~2 GB | ~6x |
medium | 769 M | medium.en |
medium |
~5 GB | ~2x |
large | 1550 M | N/A | large |
~10 GB | 1x |
whisper input1 input2 --model base
whisper input1 input2 --model medium
whisper input1 input2 --model large
import whisper
model = whisper.load_model("base")
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
# print the recognized text
print(result.text)
import whisper
model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])
ffmpeg -i meeting.wav -ss 00:00:00 -to 00:01:00 1min.wav
whipser --model base --language Chinese 1min.wav