This is the official implementation of our ACM MM 2021 oral paper Do We Really Need Frame-by-Frame Annotation Datasets for Object Tracking?
- Install AMMC
git clone https://github.com/wsumel/AMMC-Augmentation-by-Mimicking-Motion-Change-.git
cd pytracking
Run the install script to install the dependencies.You need to provide the ${conda_install_path} (e.g. ~/anaconda3) and the name ${env_name} for the created conda environment (e.g. pytracking).
# install dependencies
bash install.sh ${conda_install_path} ${env_name}
conda activate pytracking
- Download AMMC Models
Pretrain model ATOM + AMMC and Dimp + AMMC can be download from Baidu key:ammc
- Run tracker
conda activate pytracking
cd ./pytracking
# ATOM
python run_tracker.py atom default --dataset_name dataset_name --sequence sequence --debug debug --threads threads
# Dimp
python run_tracker.py dimp dimp50 --dataset_name dataset_name --sequence sequence --debug debug --threads threads
- Download FAT(Few-annotation Tracking) benchmark
Baidu key:ammc
- Training the tracker
conda activate pytracking
# ATOM + AMMC
python run_training.py bbreg atom_default
# Dimp + AMMC
python run_training.py dimp dimp50
-
Download three base datasets, namely TrackingNet, GOT-10k, LaSOT
-
Setting the inital size of the FAT:
fat_frame_number
on./ltr/admin/local.py
-
Run the script file and Modify the dataset path as your own
cd ./ltr/
python extract_dataset.py
-
LaSOT
Tracker Success Score Precision Score ATOM (paper) 0.515 n/a ATOM (ammc 1) 0.476 0.465 ATOM (ammc 3) 0.507 0.501 ATOM (ammc 5) 0.510 0.505 ATOM (ammc 10) 0.514 0.510 ATOM (ammc 1-10 best) 0.514 0.510 ATOM (ammc paper) 0.517 n/a DiMP50 (paper) 0.569 n/a DiMP50 (ammc 1) 0.524 0.502 DiMP50 (ammc 3) 0.562 0.553 DiMP50 (ammc 5) 0.571 0.567 DiMP50 (ammc 10) 0.568 0.558 DiMP50 (ammc 1-10 best) 0.571 0.567 DiMP50 (ammc paper) 0.569 n/a -
GOT-10k:
Tracker Success Score (AO) SR(0.50) SR(0.75) ATOM (paper) 0.556 0.634 0.402 ATOM (ammc 1) 0.515 0.614 0.311 ATOM (ammc 3) 0.553 0.645 0.408 ATOM (ammc 5)) 0.551 0.641 0.409 ATOM (ammc 10) 0.549 0.636 0.408 ATOM (ammc 1-10 best) 0.553 0.645 0.408 ATOM (ammc paper) 0.564 0.661 0.411 DiMP50 (paper) 0.611 0.717 0.492 DiMP50 (ammc 1) 0.525 0.626 0.323 DiMP50 (ammc 3) 0.581 0.680 0.446 DiMP50 (ammc 5) 0.605 0.708 0.488 DiMP50 (ammc 10) 0.615 0.722 0.486 DiMP50 (ammc 1-10 best) 0.615 0.722 0.486 DiMP50 (ammc paper) 0.622 0.731 0.494 -
TrackingNet:
Tracker Success Score Precision Score Normalized Precision Score ATOM (paper) 0.703 0.648 0.771 ATOM (ammc 1) 0.675 0.618 0.751 ATOM (ammc 3) 0.712 0.650 0.770 ATOM (ammc 5) 0.716 0.654 0.775 ATOM (ammc 10) 0.713 0.650 0.768 ATOM (ammc 1-10 best) 0.716 0.654 0.775 ATOM (ammc paper) 0.712 0.648 0.769 DiMP50 (paper) 0.740 0.687 0.801 DiMP50 (ammc 1) 0.698 0.635 0.765 DiMP50 (ammc 3) 0.740 0.682 0.795 DiMP50 (ammc 5) 0.742 0.681 0.796 DiMP50 (ammc 10) 0.747 0.685 0.797 DiMP50 (ammc 1-10 best) 0.747 0.685 0.797 DiMP50 (ammc paper) 0.746 0.687 0.797 -
OTB-100/OTB-2015:
Tracker Success Score Precision Score ATOM (paper) 0.669 n/a ATOM (ammc 1) 0.662 0.885 ATOM (ammc 3) 0.649 0.865 ATOM (ammc 5) 0.638 0.858 ATOM (ammc 10) 0.643 0.850 ATOM (ammc 1-10 best) 0.662 0.885 ATOM (ammc paper) 0.669 n/a DiMP50 (paper) 0.684 n/a DiMP50 (ammc 1) 0.652 0.862 DiMP50 (ammc 3) 0.647 0.852 DiMP50 (ammc 5) 0.643 0.850 DiMP50 (ammc 10) 0.640 0.847 DiMP50 (ammc 1-10 best) 0.652 0.862 DiMP50 (ammc paper) 0.669 n/a -
UAV
Tracker Success Score Precision Score ATOM (paper) 0.644 n/a ATOM (ammc 1) 0.622 0.850 ATOM (ammc 3) 0.624 0.832 ATOM (ammc 5) 0.607 0.816 ATOM (ammc 10) 0.620 0.837 ATOM (ammc 1-10 best) 0.624 0.832 ATOM (ammc paper) 0.640 n/a DiMP50 (paper) 0.654 n/a DiMP50 (ammc 1) 0.628 0.844 DiMP50 (ammc 3) 0.643 0.856 DiMP50 (ammc 5) 0.619 0.820 DiMP50 (ammc 10) 0.622 0.832 DiMP50 (ammc 1-10 best) 0.643 0.856 DiMP50 (ammc paper) 0.667 n/a
This repo is based on Pytracking which is an excellent work