This is a Pytorch implementation of DT-JSCC for task-oriented communication with digital modulation, as proposed in the paper Robust Information Bottleneck for Task-Oriented Communication with Digital Modulation.
The codes are compatible with the packages:
-
pytorch 1.8.0
-
torchvision 0.9.0a0
-
numpy 1.23.1
-
tensorboardX 2.4
The code can be run on the datasets such as MNIST and CIFAR-10, etc. One should download the datasets in a directory (e.g., ./data/
) and change the root parameter in datasets/dataloader.py
, e.g.,
root = r'./data/
-
Training the DT-JSCC on the MNIST dataset
python main.py --dataset MNIST --channels 1 --lam 1e-3 --lr 1e-3 --epoches 400 --latent_d 64 --num_latent 16 --num_embeddings 16 --psnr 4
-
Training the DT-JSCC on the CIFAR-10 dataset
python main.py --dataset CIFAR10 --mod psk --lam 1e-3 --lr 1e-3 --epoches 320 --num_embeddings 16 --psnr 4
The parameter num_embeddings
is the size of trainable codebook latent_d
is the length of codeword num_latent
is the dimension psnr
is the PSNR of AWGN channel. In the experiments,
python evaluate.py --dataset CIFAR10 --save_root ./results --name CIFAR10-num_e16-num_latent4-modpsk-snr10.0-lam0.0
The parameter name
is the trained model.
@article{xie2022robust,
title={Robust Information Bottleneck for Task-Oriented Communication with Digital Modulation},
author={Xie, Songjie and Wu, Youlong and Ma, Shuai and Ding, Ming and Shi, Yuanming and Tang, Mingjian},
journal={arXiv preprint arXiv:2209.10382},
year={2022}
}