This is an unofficial pytorch implementation of CascadeRCNN object detection as described in Cascade R-CNN Delving into High Quality Object Detection by Zhaowei Cai and Nuno Vasconcelos
tqdm
pyyaml
numpy
opencv-python
pycocotools
torch >= 1.5
torchvision >=0.6.0
we trained this repo on 4 GPUs with batch size 32(8 image per node).the total epoch is 24(about 180k iter),Adam with cosine lr decay is used for optimizing. finally, this repo achieves 41.2 mAp at 736px(max thresh) resolution with resnet50 backbone.(about 21.94)
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.412
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.605
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.446
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.232
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.449
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.568
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.328
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.518
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.547
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.336
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.589
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.718
for now we only support coco detection data.
- modify main.py (modify config file path)
from solver.ddp_mix_solver import DDPMixSolver
if __name__ == '__main__':
processor = DDPMixSolver(cfg_path="your own config path")
processor.run()
- custom some parameters in config.yaml
model_name: cascade_rcnn
data:
train_annotation_path: data/coco/annotations/instances_train2017.json
# train_annotation_path: data/coco/annotations/instances_val2017.json
val_annotation_path: data/coco/annotations/instances_val2017.json
train_img_root: data/coco/train2017
# train_img_root: data/coco/val2017
val_img_root: data/coco/val2017
max_thresh: 768
use_crowd: False
batch_size: 8
num_workers: 4
debug: False
remove_blank: Ture
model:
num_cls: 80
backbone: resnet50
pretrained: True
reduction: False
fpn_channel: 256
fpn_bias: True
anchor_sizes: [32.0, 64.0, 128.0, 256.0, 512.0]
anchor_scales: [1.0, ]
anchor_ratios: [0.5, 1.0, 2.0]
strides: [4.0, 8.0, 16.0, 32.0, 64.0]
box_score_thresh: 0.05
box_nms_thresh: 0.5
box_detections_per_img: 100
optim:
optimizer: Adam
lr: 0.0001
milestones: [24,]
warm_up_epoch: 0
weight_decay: 0.0001
epochs: 24
sync_bn: True
amp: True
val:
interval: 1
weight_path: weights
gpus: 0,1,2,3
detailed settings reference to nets.cascade_rcnn.default_cfg
- run train scripts
nohup python -m torch.distributed.launch --nproc_per_node=4 main.py >>train.log 2>&1 &
- Color Jitter
- Perspective Transform
- Mosaic Augment
- MixUp Augment
- IOU GIOU DIOU CIOU
- Warming UP
- Cosine Lr Decay
- EMA(Exponential Moving Average)
- Mixed Precision Training (supported by apex)
- Sync Batch Normalize
- PANet(neck)
- BiFPN(EfficientDet neck)
- VOC data train\test scripts
- custom data train\test scripts
- MobileNet Backbone support
@inproceedings{cai18cascadercnn,
author = {Zhaowei Cai and Nuno Vasconcelos},
Title = {Cascade R-CNN: Delving into High Quality Object Detection},
booktitle = {CVPR},
Year = {2018}
}