Competition Open Source Solutions
- Several important packages
- torch == 1.8.1+cu111
- trochvision == 0.9.1+cu111
In the classification track, we use only the OOD detection data and labels:
- Windows10
- Ubuntu20.04
- macOS (CPU only)
- Single GPU Training
- DataParallel (single machine multi-gpus)
- DistributedDataParallel
(more information: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html)
train data and test data structure:
├── data/
│ ├── train
| | ├── Images
│ | └── train.json
│ ├── test
| | ├── Images
│ | └── phase2-det.json
│ ├── val
| | ├── Images
│ | └── iid_test.json
│ └── occlusion
The structure flow of the generated file is as follows:
Put the training set image "ROBINv1.1-det" in
./data/train/Images/
Put the test set picture "phase2-det" in
./data/test/Images/
Since the given dataset contains gif images, we need to convert gif images into jpg images. We take the first frame of gif images as jpg images, and the generated jpg images automatically replace the original gif images.
python ./tools/check_gif.py ./data/test/Images
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./tools/dist_train.sh \
./config/cascade_rcnn_r50_fpn_1x_coco_backbone_convnextLarge_OnlyAdamW_cos_colorjitter_softmax_corrupt.py 8 \
--seed 0 \
--deterministic \
--work-dir ./work_dirs/
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./tools/dist_test_final.sh \
./config/cascade_rcnn_r50_fpn_1x_coco_backbone_convnextLarge_OnlyAdamW_cos_colorjitter_softmax_corrupt.py \
./work_dirs/epoch_15.pth 8 \
--format-only \
--options "jsonfile_prefix=./work_dirs/out" > ./work_dirs/out-test.out &
It can be downloaded from Baidu Cloud Disk: https://pan.baidu.com/s/1scW9Z-PjZbrqi3VL7SNJ5w Extraction code:tc77
It can be directly used for model reasoning and get final result.
- Thanks to timm for Pytorch implementation.