A library to load and upload RLlib models from the Hub.
pip install huggingface-rllib
We wrote a tutorial on how to use 🤗 Hub and RLlib here
If you use Colab or a Virtual/Screenless Machine, you can check Case 3 and Case 4.
import gym
from huggingface_rllib import load_from_hub
from ray.rllib.agent.ppo import PPOTrainer
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(
repo_id="rllib/demo-hf-CartPole-v1",
filename="ppo-CartPole-v1.zip",
)
model = PPO.load(checkpoint)
# Evaluate the agent and watch it
eval_env = gym.make("CartPole-v1")
mean_reward, std_reward = evaluate_policy(
model, eval_env, render=False, n_eval_episodes=5, deterministic=True, warn=False
)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
With package_to_hub()
we'll save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub.
It currently works for Gym and Atari environments. If you use another environment, you should use push_to_hub()
instead.
First you need to be logged in to Hugging Face:
- If you're using Colab/Jupyter Notebooks:
from huggingface_hub import notebook_login
notebook_login()
- Else:
huggingface-cli login
Then
With package_to_hub()
:
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from huggingface_sb3 import package_to_hub
# Create the environment
env_id = 'LunarLander-v2'
env = make_vec_env(env_id, n_envs=1)
# Create the evaluation env
eval_env = make_vec_env(env_id, n_envs=1)
# Instantiate the agent
model = PPO('MlpPolicy', env, verbose=1)
# Train the agent
model.learn(total_timesteps=int(5000))
# This method save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub
package_to_hub(model=model,
model_name="ppo-LunarLander-v2",
model_architecture="PPO",
env_id=env_id,
eval_env=eval_env,
repo_id="ThomasSimonini/ppo-LunarLander-v2",
commit_message="Test commit")
With push_to_hub()
:
Push to hub only push a file to the Hub, if you want to save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub, use package_to_hub()
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from huggingface_sb3 import push_to_hub
# Create the environment
env_id = 'LunarLander-v2'
env = make_vec_env(env_id, n_envs=1)
# Instantiate the agent
model = PPO('MlpPolicy', env, verbose=1)
# Train it for 10000 timesteps
model.learn(total_timesteps=10_000)
# Save the model
model.save("ppo-LunarLander-v2")
# Push this saved model .zip file to the hf repo
# If this repo does not exists it will be created
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename: the name of the file == "name" inside model.save("ppo-LunarLander-v2")
push_to_hub(
repo_id="ThomasSimonini/ppo-LunarLander-v2",
filename="ppo-LunarLander-v2.zip",
commit_message="Added LunarLander-v2 model trained with PPO",
)
- You can use xvbf (virtual screen)
!apt-get install -y xvfb python-opengl > /dev/null 2>&1
- Just put your code inside a python file and run
!xvfb-run -s "-screen 0 1400x900x24" <your_python_file>
- You can use xvbf (virtual screen)
xvfb-run -s "-screen 0 1400x900x24" <your_python_file>