simple dcgan,wgan and improved wgan implementation by tensorflow, this is for practice purpose. tensorflow version=1.1.0
download MNIST data from http://yann.lecun.com/exdb/mnist/ and unzip data to some dir,for example
data
|__ 10k-images-idx3-ubyte
|__ train-images-idx3-ubyte
python dcgan.py or wgan.py or wgan_gp.py \
--data_path=data \
--mode=train \
--model_dir=models \
--batch_size=100 \
--epoch_num=100 \
--rand_dim=128
python dcgan.py or wgan.py or wgan_gp.py \
--data_path=data \
--mode=infer \
--model_dir=models \
--batch_size=100 \
--epoch_num=100 \
--rand_dim=128
- dcgan 100 epoch results
- Generative Adversarial Nets
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- Wasserstein GAN
- Improved Training of Wasserstein GANs
- https://github.com/carpedm20/DCGAN-tensorflow
- https://github.com/shekkizh/WassersteinGAN.tensorflow
- https://github.com/igul222/improved_wgan_training