These are the models coded and used by me, organized by where it is applied;
Keep updating ... ...
The following command clones all the files (>200MB);
git clone https://github.com/zhedongzheng/finch.git
Test scripts can be run, the contents below are used to index the model and its test scripts;
python xxxx_test.py
I have used these well-known libraries across different sections:
Most models are written in scikit-learn interfaces, with fit()
and predict()
methods;
- Natural Language Processing
- Computer Vision
- Reinforcement Learning
- Information Retrieval
- Shallow Structure Models
- Data Science
- Cloud Computing
- Database
-
Python | LSA | Model for Visualization Test Result | Model for Concepts Test Result |
-
TensorFlow | LSTM + Attention Model IMDB Test | Model (via tf.estimator) IMDB Test |
-
Python | 2nd order Markov Model Robert Frost Test |
-
TensorFlow | Char-RNN Model | English Test Chinese Test | Model (Beam-Search) English Test |
-
PyTorch | Char-RNN Model | English Test Chinese Test |
-
MXNet | Char-RNN Model | English Test Chinese Test |
-
TensorFlow | LSTM Model | POS Tagging Test | Chinese Segmentation Test |
-
TensorFlow | BiLSTM Model | POS Tagging Test | Chinese Segmentation Test |
-
TensorFlow | BiLSTM + CRF Model | POS Tagging Test | Chinese Segmentation Test |
-
PyTorch | LSTM Model | POS Tagging Test | Chinese Segmentation Test |
-
PyTorch | BiLSTM Model | POS Tagging Test | Chinese Segmentation Test |
-
TensorFlow | Seq2Seq Model Sorting Test | Model (via tf.estimator) Sorting Test |
-
TensorFlow | Seq2Seq + Attention Model Sorting Test |
-
TensorFlow | Seq2Seq + BiLSTM Encoder Model Sorting Test |
-
TensorFlow | Seq2Seq + Beam-Search Model Sorting Test |
-
TensorFlow | Seq2Seq + BiLSTM Encoder + Attention + Beam-Search Model Sorting Test |
-
TensorFlow | Varational Recurrent Autoencoder |
-
PyTorch | Seq2Seq Model Sorting Test |
-
PyTorch | Seq2Seq + Attention Model Sorting Test |
-
PyTorch | Seq2Seq + BiLSTM Encoder Model Sorting Test |
(To run this section, you need to download COCO dataset first)
-
TensorFlow | CNN + RNN + Attention + Beam-Search Model COCO Test |
-
TensorFlow | Fine-tuning CNN + RNN + Attention + Beam-Search Model COCO Test |
-
OP | Resize
-
OP | Rotations
-
Segmentation | Contours
-
Segmentation | Sorting Contours
-
Segmentation | Line detection
-
Segmentation | Circle detection
-
Segmentation | Blob detection
-
Detection | Face & Eye Detection Using Cascade Classifier
-
Detection | Walker & Car Detection Using Cascade Classifier
-
Bayesian Inference | Pixel Classification
-
TensorFlow | MLP Model MNIST Test CIFAR10 Test |
-
TensorFlow | CNN Model MNIST Test CIFAR10 Test |
-
TensorFlow | CNN Model (via tf.estimator) MNIST Test |
-
TensorFlow | RNN Model MNIST Test CIFAR10 Test |
-
TensorFlow | RNN Model (via tf.estimator) MNIST Test |
-
PyTorch | MLP Model MNIST Test CIFAR10 Test |
-
PyTorch | CNN Model MNIST Test CIFAR10 Test |
-
PyTorch | RNN Model MNIST Test CIFAR10 Test |
-
MXNet | CNN Model MNIST Test CIFAR10 Test |
-
MXNet | RNN Model MNIST Test CIFAR10 Test |
-
Autoencoder
-
TensorFlow | Stacked Autoencoder (weights-tied) Model MNIST Test |
-
TensorFlow | Denoising Autoencoder Model MNIST Test |
-
TensorFlow | Sparse Autoencoder Model MNIST Test |
-
TensorFlow | Variational Autoencoder Model MNIST Test |
-
TensorFlow | Conv2D Autoencoder (weights-tied) Model MNIST Test CIFAR10 Test |
-
PyTorch | Stacked Autoencoder (weights-tied) Model MNIST Test |
-
PyTorch | Denoising Autoencoder Model MNIST Test |
-
PyTorch | Sparse Autoencoder Model MNIST Test |
-
PyTorch | Variational Autoencoder Model MNIST Test |
-
PyTorch | Conv2D Autoencoder (weights-tied) Model MNIST Test CIFAR10 Test |
-
-
Generative Adversarial Network
-
TensorFlow | DCGAN Model MNIST Test Result | Conditional Model MNIST Test |
-
PyTorch | DCGAN Model MNIST Test |
-
MXNet | DCGAN Model MNIST Test |
-
-
Python | Q-Learning Model CartPole Test |
-
Python | Sarsa Model CartPole Test |
-
TensorFlow | Policy Gradient Model CartPole Test |
-
PyTorch | Policy Gradient Model CartPole Test |
-
Python | Apriori Model MovieLens Test |
-
Python | Collborative Filtering | MovieLens User-based Model Test |
-
TensorFlow | Matrix Factorization Model MovieLens Test |
-
TensorFlow | K Nearest Neighbors Model MNIST Test |
-
TensorFlow | K-Means Model MNIST Test |
-
TensorFlow | Random Forest Model MNIST Test |
-
Python | Adaboost Pseudocode Model Test |
-
Counting | Scala API Python API |
-
Averaging | Scala API Python API |
-
Minimum | Scala API Python API |
-
Word Count | Scala API Python API |