/genview

[ECCV 2024] Official repository of "GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning".

Primary LanguagePythonApache License 2.0Apache-2.0

GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning (ECCV 2024)

GenView Framework

This repository is the official implementation of "GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning". ECCV, 2024.

GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning
Xiaojie Li^1,2, Yibo Yang^3, Xiangtai Li^4, Jianlong Wu^1, Yue Yu^2, Bernard Ghanem^3, Min Zhang^1
^1Harbin Institute of Technology, Shenzhen, ^2Peng Cheng Laboratory, ^3King Abdullah University of Science and Technology, ^4Nanyang Technological University

🔨 Installation

Step 1: Create and Activate a Conda Environment

Create a new Conda environment named env_genview with Python 3.8, and activate it:

conda create --name env_genview python=3.8 -y
conda activate env_genview

Step 2: Install Required Packages

Install PyTorch, torchvision, torchaudio, and other necessary packages using pip or Conda. Choose the installation command based on your preference and GPU compatibility:

# Using pip
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117

# Or using conda
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

# Install timm, open_clip and diffusuers
pip install timm=0.9.7 open_clip==2.22.0 diffusers==0.21.4

Step 3: Clone Repository and Install Dependencies

After cloning the repository, navigate to the genview directory and use openmim to install project dependencies:

git clone https://github.com/xiaojieli0903/genview.git
cd genview
pip install -U openmim
mim install -e .

For Quick Environment Setup

Execute the provided script to automate the environment setup. This script also updates specific files in the open_clip and timm packages with our customized versions:

sh tools/toolbox_genview/deploy_env.sh

Additionally, to apply our modifications to open_clip and timm, run:

sh tools/toolbox_genview/change_openclip_timm.sh

➡️ Data Preparation

Prepare and generate adaptive view generation data based on ImageNet.

Step 1: Extract CLIP Features

Extract and save features for each image using CLIP, then perform PCA analysis. See tools/clip_pca/README.md for more details:

python tools/clip_pca/extract_features_pca.py --input-list /path/to/image_list.txt --output-dir /path/to/output

Outputs are saved in features/ and eigenvalues/ directories.

Step 2: Determine Suitable Noise Levels

Select the appropriate noise level for each image to maintain semantic consistency while ensuring diversity. Generate 'fg_ratios.txt' in the specified output directory:

python tools/clip_pca/calculate_fgratio.py --input-list /path/to/your/image_list.txt --output-dir /path/to/output_directory

Distribute the original fg_ratios.txt entries into separate files based on the specified ranges and mapping values. Each output file is named after its corresponding mapped value (e.g., fg_ratios_0.txt, fg_ratios_100.txt, etc.), containing image paths and their fg_ratio values that fall into the respective ranges.

python tools/clip_pca/generate_ada_noise_level.py --input-file /path/to/your/fg_ratios.txt --output-dir /path/to/your/fg_ratios_{noise_level}.txt

Step 3: Generate Conditioned Image Dataset and Final List

Use the following commands to generate image variations and compile the dataset list:

sh tools/toolbox_genview/generate_image_variations_noiselevels.sh /path/to/your/fg_ratios_{noise_level}.txt /path/to/datasets/imagenet/train_variations/ /path/to/datasets/imagenet/train/ {noise_level}
# Repeat for other fg_ratios_*.txt files with corresponding noise levels

For Quick Data Preparation

If you prefer not to generate data yourself, we will provide pre-generated data (train_variations.tar.*, coming soon) based on ImageNet.

Merge and extract the training data:

cd /path/to/download_tars/
cat train_variations.tar.* > train_variations.tar
tar -xvf train_variations.tar

The directory structure under train_variations mirrors that of imagenet/train.

Create Dataset Symlinks in the genview directory:

cd genview
mkdir -p data/imagenet
cd data/imagenet
ln -s /path/to/imagenet/train .
ln -s /path/to/imagenet/val .
ln -s /path/to/download_tars/train_variations/ .

Generate the synthetic image list using generate_train_variations_list.py:

python tools/toolbox_genview/generate_train_variations_list.py --input-dir /path/to/train_variations --output-list data/imagenet/train_variations.txt

🔄 Training

Detailed commands for running pretraining and downstream tasks with single or multiple machines/GPUs:

Training with Multiple GPUs

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 PORT=29500 bash tools/dist_train.sh ${CONFIG_FILE} 8 [PY_ARGS] [--resume /path/to/latest/epoch_{number}.pth]

Training with Multiple Machines

CPUS_PER_TASK=8 GPUS_PER_NODE=8 GPUS=16 sh tools/slurm_train.sh $PARTITION $JOBNAME ${CONFIG_FILE} $WORK_DIR [--resume /path/to/latest/epoch_{number}.pth]

Ensure to replace $PARTITION, $JOBNAME, and $WORK_DIR with actual values for your setup.

🚀 Experiments

The following experiments provide various pretraining setups using different architectures, epochs, and GPU configurations.

SimSiam + ResNet50 + 200 Epochs + 8 GPUs

  • Pretraining:
    CPUS_PER_TASK=8 GPUS_PER_NODE=8 GPUS=8 sh tools/slurm_train.sh $PARTITION simsiam_pretrain configs/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_singleview_clipmask.py work_dirs/simsiam_resnet50_8xb32-coslr-200e_in1k_singleview_clipmask
  • Linear Probe:
    CPUS_PER_TASK=8 GPUS_PER_NODE=8 GPUS=8 sh tools/slurm_train.sh $PARTITION simsiam_linear configs/simsiam/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k_clip.py work_dirs/simsiam_resnet50_8xb32-coslr-200e_in1k_diffssl_prob1_128w_clipmask/linear --cfg-options model.backbone.init_cfg.checkpoint=work_dirs/simsiam_resnet50_8xb32-coslr-200e_in1k_diffssl_prob1_128w_clipmask/epoch_200.pth

MoCo v3 + ResNet50 + 100 Epochs + 8 GPUs

  • Pretraining:

    CPUS_PER_TASK=8 GPUS_PER_NODE=8 GPUS=8 sh tools/slurm_train.sh $PARTITION mocov3r50_pretrain configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_singleview_clipmask.py work_dirs/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_singleview_clipmask
  • Linear Probe:

    CPUS_PER_TASK=8 GPUS_PER_NODE=8 GPUS=8 sh tools/slurm_train.sh $PARTITION mocov3r50_linear configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k_clip.py work_dirs/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_singleview_clipmask/linear --cfg-options model.backbone.init_cfg.checkpoint=work_dirs/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_singleview_clipmask/epoch_100.pth

MoCo v3 + ViT-B + 300 Epochs + 16 GPUs

  • Pretraining:

    CPUS_PER_TASK=8 GPUS_PER_NODE=8 GPUS=16 sh tools/slurm_train.sh $PARTITION mocov3vit_pretrain configs/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k_singleview_clipmask.py work_dirs/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k_singleview_clipmask
  • Linear Probe:

    CPUS_PER_TASK=8 GPUS_PER_NODE=8 GPUS=8 sh tools/slurm_train.sh $PARTITION mocov3vit_linear configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k_clip.py work_dirs/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k_singleview_clipmask/linear --cfg-options model.backbone.init_cfg.checkpoint=work_dirs/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k_singleview_clipmask/epoch_300.pth

📍 Model Zoo

Coming soon.

✏️ Citation

If you find the repo useful for your research, please consider citing our paper:

@inproceedings{li2023genview,
  author={Li, Xiaojie and Yang, Yibo and Li, Xiangtai and Wu, Jianlong and Yu, Yue and Ghanem, Bernard and Zhang, Min},
  title={GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning}, 
  year={2024},
  pages={306--325},
  booktitle={Proceedings of the European Conference on Computer Vision},
  publisher="Springer"
}

👍 Acknowledgments

This codebase builds on mmpretrain. Thanks to the contributors of this great codebase.