Exploring Testing Sharing
explaing model https://christophm.github.io/interpretable-ml-book/
Decorators: https://www.thecodeship.com/patterns/guide-to-python-function-decorators/
github upstream management: https://medium.com/sweetmeat/how-to-keep-a-downstream-git-repository-current-with-upstream-repository-changes-10b76fad6d97
https://blog.evjang.com/2018/12/uncertainty.html
- http://machinelearningarchives.blogspot.com/2018/02/entity-embeddings-of-categorical.html
- https://github.com/entron/entity-embedding-rossmann/blob/kaggle/models.py
- https://towardsdatascience.com/decoded-entity-embeddings-of-categorical-variables-in-neural-networks-1d2468311635
https://blog.acolyer.org/2019/01/09/neural-ordinary-differential-equations/amp/
- VAE
- label encoding in sklearn and pandas https://www.back2code.me/2017/09/numeric-and-binary-encoders-in-python/
https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b
- http://videolectures.net/DLRLsummerschool2018_wilson_bayesian_neural_nets/
- https://gpytorch.readthedocs.io/en/latest/
- https://yaledatascience.github.io/2016/10/29/autoencoders.html
- https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/
- https://stephens999.github.io/fiveMinuteStats/intro_to_em.html
- https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
- CNN
Kaggle: upzip https://www.kaggle.com/c/diabetic-retinopathy-detection/discussion/45994
book:
- **传统地权制度及其