xiaolw95/NetMoss

Error occurred in running test data

Opened this issue · 1 comments

Hello NetMoss team, what a wonderful job!
When I test the NetMoss pipeline according to your manual, some errors occurred in netROC():

myROC = netROC(case_dir,control_dir,marker,metadata)
[1] "training datasets..."
Error in y - ymean : non-numeric argument to binary operator
In addition: Warning messages:
1: In randomForest.default(m, y, ...) :
The response has five or fewer unique values. Are you sure you want to do regression?
2: In mean.default(y) : argument is not numeric or logical: returning NA

How could I fix it?

WJH58 commented

Hello NetMoss team, what a wonderful job! When I test the NetMoss pipeline according to your manual, some errors occurred in netROC():

myROC = netROC(case_dir,control_dir,marker,metadata)
[1] "training datasets..."
Error in y - ymean : non-numeric argument to binary operator
In addition: Warning messages:
1: In randomForest.default(m, y, ...) :
The response has five or fewer unique values. Are you sure you want to do regression?
2: In mean.default(y) : argument is not numeric or logical: returning NA

How could I fix it?

Hi I am not a team member but I polished the netROC function and run it successfully. Below is the code:

netROC <- function (case_dir, control_dir, marker, metadata, plot.roc = T, 
                    train.num = 20) 
{
  my.wd2 = getwd()
  print("training datasets...")
  case_data_list <- list()
  case_samples <- c()
  setwd(case_dir)
  dir3 = list.files()
  n3 = length(dir3)
  for (m in 1:n3) {
    x.case.net = read.table(file = dir3[m], header = T, sep = "\t", 
                            row.names = 1)
    case_data_list[[m]] = x.case.net
    case_samples <- c(case_samples, length(colnames(x.case.net)) - 
                        1)
  }
  control_data_list <- list()
  control_samples <- c()
  setwd(control_dir)
  dir4 = list.files()
  n4 = length(dir4)
  for (m in 1:n4) {
    x.control.net = read.table(file = dir4[m], header = T, 
                               sep = "\t", row.names = 1)
    control_data_list[[m]] = x.control.net
    control_samples <- c(control_samples, length(colnames(x.control.net)) - 
                           1)
  }
  roc.all = list()
  for (kk in 1:n3) {
    eval(parse(text = paste("h = control_data_list[[", kk, 
                            "]]", sep = "")))
    eval(parse(text = paste("d = case_data_list[[", kk, "]]", 
                            sep = "")))
    hh = h
    hh$genus = rownames(hh)
    hh = melt(hh, id.vars = "genus")
    dd = d
    dd$genus = rownames(dd)
    dd = melt(dd, id.vars = "genus")
    all1 = rbind(hh, dd)
    all2 = dcast(all1, genus ~ variable, mean, fill = 0)
    sample.all = all2[, -1]
    rownames(sample.all) = all2$genus
    aa = data.frame(t(sample.all))
    aa$sum = rowSums(aa)
    aa = aa[which(aa$sum != 0), ]
    sample.all2 = data.frame(aa[, -ncol(aa)])
    m.marker = intersect(as.character(colnames(sample.all2)), 
                         as.character(rownames(marker)))
    m.meta = metadata[as.character(rownames(metadata)) %in% 
                        as.character(rownames(sample.all2)), ]
    eval(parse(text = paste("auc_crc", kk, "_all = data.frame()", 
                            sep = "")))
    for (mm in 1:train.num) {
      train.data = sample(rownames(sample.all2), nrow(sample.all2) * 
                            0.7, replace = F)
      sample.train = sample.all2[as.character(rownames(sample.all2)) %in% 
                                   as.character(train.data), ]
      sample.train$group = m.meta[as.character(rownames(sample.train)), 
                                  "type"]
      test.data = setdiff(rownames(sample.all2), train.data)
      sample.test = sample.all2[as.character(rownames(sample.all2)) %in% 
                                  as.character(test.data), ]
      sample.test$group = m.meta[as.character(rownames(sample.test)), 
                                 "type"]
      if (length(intersect(m.marker, colnames(sample.train))) == 
          1) {
        sample.train2 = data.frame(sample.train[, as.character(colnames(sample.train)) %in% 
                                                  as.character(m.marker)])
        colnames(sample.train2) = as.character(intersect(m.marker, 
                                                         colnames(sample.train)))
        rownames(sample.train2) = rownames(sample.train)
      }
      else {
        sample.train2 = sample.train[, as.character(colnames(sample.train)) %in% 
                                       as.character(m.marker)]
      }
      sample.train2$group = as.factor(sample.train$group) # Factorise sample.train$group 
      rf.train = randomForest(group ~ ., sample.train2, 
                              ntree = 1000, nperm = 100, importance = T)
      importance_rf = data.frame(importance(rf.train))
      importance_rf = importance_rf[order(importance_rf$MeanDecreaseAccuracy, 
                                          decreasing = T), ]
      train.5_10 = replicate(5, rfcv(sample.train2[-ncol(sample.train2)], 
                                     sample.train2$group, cv.fold = 10, step = 1.5), 
                             simplify = F)
      train.5_10.2 = data.frame(sapply(train.5_10, "[[", 
                                       "error.cv"))
      train.5_10.2$names = rownames(train.5_10.2)
      train.5_10.2 = melt(train.5_10.2, id = "names")
      train.5_10.2$names = as.numeric(as.character(train.5_10.2$names))
      train.5_10.2 = summaryBy(value ~ names, train.5_10.2, 
                               FUN = mean)
      marker.num = min(train.5_10.2[which(train.5_10.2$value.mean == 
                                            min(train.5_10.2$value.mean)), 1])
      marker.re = data.frame(rownames(importance_rf[1:marker.num, 
      ]))
      colnames(marker.re) = "Name"
      if (length(intersect(marker.re$Name, colnames(sample.train))) == 
          1) {
        sample.train3 = data.frame(sample.train[, as.character(colnames(sample.train)) %in% 
                                                  as.character(marker.re$Name)])
        colnames(sample.train3) = as.character(intersect(marker.re$Name, 
                                                         colnames(sample.train)))
        rownames(sample.train3) = rownames(sample.train)
      } else {
        sample.train3 = sample.train[, as.character(colnames(sample.train)) %in% 
                                       as.character(marker.re$Name)]
      }
      sample.train3$group = as.factor(sample.train$group) # Factorise sample.train$group 
      rf.train = randomForest(group ~ ., sample.train3, 
                              ntree = 1000, nperm = 100, importance = T)
      test_pred.select = predict(rf.train, sample.test)
      test_freq.select = table(test_pred.select, sample.test$group)
      group_select = data.frame(test_pred.select)
      group_select$test_orig.select = sample.test[as.character(rownames(group_select)), 
                                                  "group"] %>% as.factor() ## Factorise test_orig.select otherwise it cannot be converted to a numeric variable.
  
      e11 = group_select
      e11$test_pred.select = as.numeric(e11$test_pred.select)
      e11$test_orig.select = as.numeric(e11$test_orig.select)
      e11[which(e11$test_orig.select != 1), 2] = 0
      e11[which(e11$test_pred.select != 1), 1] = 0
      for (i in 1:nrow(e11)) ifelse(e11[i, 1] == e11[i, 
                                                     2], e11[i, 3] <- 1, e11[i, 3] <- 0)
      b = data.frame(predict(rf.train, sample.test, type = "prob"))
      e11$prob = b[as.character(rownames(e11)), "disease"]
      p = ggplot(e11, aes(d = test_orig.select, m = prob)) + 
        geom_roc(n.cuts = 0) + style_roc()
      auc <- calc_auc(p)
      eval(parse(text = paste("roc_crc", kk, "_", mm, " = e11", 
                              sep = "")))
      eval(parse(text = paste("auc_crc", kk, "_all[", mm, 
                              ",1] = ", mm, sep = "")))
      eval(parse(text = paste("auc_crc", kk, "_all[", mm, 
                              ",2] = auc$AUC", sep = "")))
      if (auc$AUC > 0.7) {
        eval(parse(text = paste("roc.all[[", kk, "]] = roc_crc", 
                                kk, "_", mm, sep = "")))
        break
      }
      if (mm == train.num) {
        eval(parse(text = paste("m.auc = which(auc_crc", 
                                kk, "_all$V2 == max(auc_crc", kk, "_all$V2))", 
                                sep = "")))
        eval(parse(text = paste("roc.all[[", kk, "]] = roc_crc", 
                                kk, "_", m.auc, sep = "")))
      }
    }
  }
  for (nn in 1:n3) {
    eval(parse(text = paste("crc", nn, " = roc.all[[", nn, 
                            "]]", sep = "")))
    eval(parse(text = paste("crc", nn, "$type = 'CRC", nn, 
                            "'", sep = "")))
  }
  if (n3 > 1) {
    mydata = crc1
    for (nn in 2:n3) {
      eval(parse(text = paste("mydata = rbind(mydata,crc", 
                              nn, ")", sep = "")))
    }
    w.case = data.frame(sample = case_samples)
    w.case$w1 = 1/w.case$sample * sum(w.case$sample)
    w.case$w2 = w.case$w1/sum(w.case$w1)
    y <- mydata$test_orig.select
    w = rep(w.case[1, 3], nrow(crc1))
    for (nn in 2:n3) {
      eval(parse(text = paste("w = c(w,rep(w.case[", nn, 
                              ",3],nrow(crc", nn, ")))", sep = "")))
    }
  } else {
    mydata = crc1
    w.case = data.frame(sample = case_samples)
    w.case$w1 = 1/w.case$sample * sum(w.case$sample)
    w.case$w2 = w.case$w1/sum(w.case$w1)
    y <- mydata$test_orig.select
    w = rep(w.case[1, 3], nrow(crc1))
  }
  y.hat <- mydata$prob
  tp.fp <- WeightedROC(y.hat, y, w)
  if (plot.roc) 
    p2 = ggplot() + geom_path(aes(FPR, TPR), data = tp.fp) + 
   # coord_equal() + # I muted coord_equal() because it would result in error for me.
    annotate("text", x = 0.75, y = 0.15, 
                             label = paste("AUC =", round(WeightedAUC(tp.fp), 
                                                          2))) + labs(x = "False positive fraction", y = "True positive fraction", 
                                                                      title = "Combined ROC") + theme_bw()
  setwd(my.wd2)
  ggsave("NetMoss_ROC.png", p2)
  tp.fp2 = tp.fp[, c(3, 1, 2)]
  return(tp.fp2)
}