引用
本项目模型BiLSTM+CRF参考论文:http://www.aclweb.org/anthology/N16-1030 ,IDCNN+CRF参考论文:https://arxiv.org/abs/1702.02098
构建
-
安装好bazel代码构建工具,安装好tensorflow(目前本项目需要tf 1.0.0alpha版本以上)
-
切换到本项目代码目录,运行./configure
-
编译后台服务
bazel build //kcws/cc:seg_backend_api
训练
python kcws/train/process_anno_file.py <语料目录> pre_chars_for_w2v.txt
bazel build third_party/word2vec:word2vec
先得到初步词表
./bazel-bin/third_party/word2vec/word2vec -train pre_chars_for_w2v.txt -save-vocab pre_vocab.txt -min-count 3
处理低频词 python kcws/train/replace_unk.py pre_vocab.txt pre_chars_for_w2v.txt chars_for_w2v.txt
训练word2vec
./bazel-bin/third_party/word2vec/word2vec -train chars_for_w2v.txt -output vec.txt -size 50 -sample 1e-4 -negative 5 -hs 1 -binary 0 -iter 5
构建训练语料工具
bazel build kcws/train:generate_training
生成语料
./bazel-bin/kcws/train/generate_training vec.txt <语料目录> all.txt
得到train.txt , test.txt文件
python kcws/train/filter_sentence.py all.txt
- 安装好tensorflow,切换到kcws代码目录,运行:
python kcws/train/train_cws.py --word2vec_path vec.txt --train_data_path <绝对路径到train.txt> --test_data_path test.txt --max_sentence_len 80 --learning_rate 0.001 (默认使用IDCNN模型,可设置参数”--use_idcnn False“来切换BiLSTM模型)
- 生成vocab
bazel build kcws/cc:dump_vocab
./bazel-bin/kcws/cc/dump_vocab vec.txt kcws/models/basic_vocab.txt
- 导出训练好的模型
python tools/freeze_graph.py --input_graph logs/graph.pbtxt --input_checkpoint logs/model.ckpt --output_node_names "transitions,Reshape_7" --output_graph kcws/models/seg_model.pbtxt
-
词性标注模型下载 (临时方案,后续文档给出词性标注模型训练,导出等)
从 https://pan.baidu.com/s/1bYmABk 下载pos_model.pbtxt到kcws/models/目录下
-
运行web service
./bazel-bin/kcws/cc/seg_backend_api --model_path=kcws/models/seg_model.pbtxt(绝对路径到seg_model.pbtxt>) --vocab_path=kcws/models/basic_vocab.txt --max_sentence_len=80
词性标注的训练说明:
https://github.com/koth/kcws/blob/master/pos_train.md
自定义词典
目前支持自定义词典是在解码阶段,参考具体使用方式请参考kcws/cc/test_seg.cc 字典为文本格式,每一行格式如下:
<自定义词条>\t<权重>
比如:
蓝瘦香菇 4
权重为一个正整数,一般4以上,越大越重要
demo
附: 使用相同模型训练的公司名识别demo: