/DynamicGCN

Primary LanguagePython

DynamicGCN

This is the source code for paper Learning Dynamic Context Graphs for Predicting Social Events appeared in KDD2019 (research track)

Songgaojun Deng, Huzefa Rangwala, Yue Ning

Data

  • ICEWS event data is available online.
  • ICEWS news data has not been released publicly.

Libraries

Sample dataset

  • THAD6h (Thailand dynamic (temporal) dataset, around 600 nodes per graph) Link
  • INDD6h Link
  • EGYD6h Link
  • RUSD6h Link
    • *.idx / *.tidx Word index file for training/testing
    • *.x / *.tx Temporal graph input file for training/testing
    • *.y / *.ty Ground truth for training/testing

Cite

Please cite our paper if you find this code useful for your research:

@inproceedings{deng2019learning,
  title={Learning Dynamic Context Graphs for Predicting Social Events},
  author={Deng, Songgaojun and Rangwala, Huzefa and Ning, Yue},
  booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={1007--1016},
  year={2019}
}