/gpupixel-filter

Real-time image and video processing library similar to GPUImage, with built-in beauty filters, achieving commercial-grade beauty effects. Written in C++11 and based on OpenGL/ES.

Primary LanguageC++MIT LicenseMIT

English | 简体中文

GPUPixel Stars GPUPixel Release GPUPixel Stars GPUPixel Stars


Welcome to join us to make GPUPixel better by participating discussions, opening issues, submitting PRs.

📢 The face landmark detection has replaced Face++ with VNN starting from v1.2.0; no more Face++ network verification requirements are needed 👏

Introduction

⛰️ GPUPixel is a real-time, high-performance image and video filter library, extremely easy to compile and integrate with small library size.

🔑 GPUPixel is written in C++11 and is based on OpenGL/ES, incorporating a built-in beauty face filter that achieves commercial-grade beauty effects.

🔌 GPUPixel supports platforms including iOS, Android, Mac, Win and Linux. It can theoretically be ported to any platform that supports OpenGL/ES.

Effects Preview

👉 Video: YouTube | BiliBili

Origin Smooth White ThinFace
BigEye Lipstick Blusher ON-OFF

Architecture

Features

This table compares the features supported by GPUPixel and GPUImage and Android-GPUImage:

✅: Supported | ❌: Not supported | ✏️: Planning

GPUPixel GPUImage Android-GPUImage
📷 Filters:
Skin Smoothing Filter
Skin Whitening Filter
Face Slimming Filter
Big Eyes Filter
Lipstick Filter
Blush Filter
More Build in Filter
🎬 Input Formats:
YUV420P(I420)
RGBA
JPEG
PNG
NV21(for Android) ✏️
🎥 Output Formats:
RGBA
YUV420P(I420) ✏️
💻 Platform:
iOS
Mac
Android
Win
Linux

Performance

iPhone

- iPhone 6P iPhone 8 iPhone X iPhone 11 iPhone 14 pro
CPU 5% 5% 3% 3% 3%
Time Taken 10ms 4ms 3ms 3ms 3ms

Android

- Xiaomi 10 Huawei Mate30 Vivo SAMSUNG Google Pixel
CPU 3% 5% - - -
Time Taken 6ms 5ms - - -

Lib Size

iOS(.framework) MacOS(.framework) Android(.aar)
Size 2.4 MB 2.6 MB 2.1 MB

Before You Start

⭐️ Star us on GitHub, and be instantly notified for new releases!

Getting Started

How to Build

Compile using CMake frome v1.1.0. Please search for instructions on how to install and configure CMake.

The generated libraries and app will be located in the "output" directory of the project's root folder.

iOS

# Generate project
## for iOS arm64
cmake -G Xcode -B build -S src -DCMAKE_TOOLCHAIN_FILE=toolchain/ios.toolchain.cmake -DPLATFORM=OS64
 
# Build
cmake --build build --config Debug #or Release

Mac

# Generate project
## for Mac Apple Silicon
cmake -G Xcode -B build -S src -DCMAKE_TOOLCHAIN_FILE=toolchain/ios.toolchain.cmake -DPLATFORM=MAC_ARM64
## for Mac Intel
cmake -G Xcode -B build -S src -DCMAKE_TOOLCHAIN_FILE=toolchain/ios.toolchain.cmake -DPLATFORM=MAC

# Build
cmake --build build --config Debug #or Release

Android

Open the directory src/android/java in Android Studio.

Windows

You need install and config Cmake and MinGW64 by yourself.

# Generate project
cmake -G "MinGW Makefiles" -B build -S src

# Build
cmake --build build -DCMAKE_BUILD_TYPE=Debug #or Release

Linux (Test on ubuntu)

# install cmake 
sudo apt-get install cmake pkg-config
# install dependent lib
sudo apt-get install mesa-utils libglu1-mesa-dev freeglut3-dev mesa-common-dev libglfw3-dev

# Generate project
cmake -B build -S src

# Build
cmake --build build -DCMAKE_BUILD_TYPE=Debug #or Release 

App demo

iOS and Mac

Refer to examples/ios and examples/mac

Android

Refer to src/android/java

Window and Linux

Refer to examples/desktop . The compilation method is the same as compiling the library.

# Generate project
cmake -G "MinGW Makefiles" -B examples/build -S examples

# Build
cmake --build build -DCMAKE_BUILD_TYPE=Debug #or Release 

App Usage

A S D F G H - Increase smooth, white, thin face, big eye, lipstick, blusher level

Z X C V B N - Decrease smooth, white, thin face, big eye, lipstick, blusher level

How to Use

Declear filters

// video data input
std::shared_ptr<SourceRawDataInput> source_raw_input_;
// beauty filter
std::shared_ptr<BeautyFaceFilter> beauty_face_filter_;
// video data output 
std::shared_ptr<TargetRawDataOutput> target_raw_output_;

Create and link filters

 gpupixel::GPUPixelContext::getInstance()->runSync([&] {
    // Create filter
    source_raw_input_ = SourceRawDataInput::create();
    target_raw_output_ = TargetRawDataOutput::create();
    // Face Beauty Filter
    beauty_face_filter_ = BeautyFaceFilter::create();
    
    // Add filter
    source_raw_input_->addTarget(beauty_face_filter_)
                     ->addTarget(target_raw_output_);
 }

Input YUV420P or RGBA

// ...
// YUVI420
 source_raw_input_->uploadBytes(width,
                                height, 
                                bufferY,
                                strideY, 
                                bufferU, 
                                strideU,
                                bufferV, 
                                strideV);
// ...
// bytes: RGBA data
 source_raw_input_->uploadBytes(bytes,
                                width, 
                                height, 
                                stride);

Output Data Callback

// I420 callback
target_raw_output_->setI420Callbck([=](const uint8_t *data, 
                                        int width, 
                                        int height, 
                                        int64_t ts) {
    size_t y_size = width * height;
    const uint8_t *uData = data + y_size;
    const uint8_t *vData = data + y_size + y_size / 4;
    // Do something you want
});

// RGBA callback->
target_raw_output_->setPixelsCallbck([=](const uint8_t *data, 
                                        int width, 
                                        int height, 
                                        int64_t ts) {
    size_t rgba_size = width * height*4;
    // Do something you want
});

// Output data callbck

Star History

Star History Chart

Contributing

Welcome to join us to make GPUPixel better by participating discussions, opening issues, submitting PRs.

At the same time, please consider supporting GPUPixel by sharing it on social media and at events and conferences.

Acknowledgement

Reference Project

  1. GPUImage
  2. CainCamera
  3. AwemeLike
  4. VNN

License

This repository is available under the MIT License.