/MachineLearning

一些关于机器学习的学习资料与研究介绍

机器学习资源 Machine learning Resources

本项目已更新,请移步到这里参与我们最新的机器学习开源项目。

快速开始学习:

其他有用的资料:


一个简洁明了的时间序列处理(分窗、特征提取、分类)库:Seglearn

计算机视觉这一年:这是最全的一份CV技术报告

深度学习(花书)中文版

深度学习最值得看的论文

最全面的深度学习自学资源集锦

Machine learning surveys

快速入门TensorFlow

自然语言处理数据集   Learning Machine Learning? Six articles you don’t want to miss

Getting started with machine learning documented by github


研究领域资源细分


开始学习:预备知识 Prerequisite


文档 notes


课程与讲座 Course and talk

机器学习 Machine Learning

  **大学应用深度学习课程

神经网络,机器学习,算法,人工智能等 30 门免费课程详细清单  

深度学习 Machine Learning

强化学习 Machine Learning


相关书籍 reference book

  • Hands on Machine Learning with Scikit-learn and Tensorflow

  • 入门读物 The Elements of Statistical Learning(英文第二版),The Elements of Statistical Learning.pdf

  • 机器学习, (@Prof. Zhihua Zhou/周志华教授)

  • 统计学习方法, (@Dr. Hang Li/李航博士)

  • 一些Kindle读物:

    • 利用Python进行数据分析

    • 跟老齐学Python:从入门到精通

    • Python与数据挖掘 (大数据技术丛书) - 张良均

    • Python学习手册

    • Python性能分析与优化

    • Python数据挖掘入门与实践

    • Python数据分析与挖掘实战(大数据技术丛书) - 张良均

    • Python科学计算(第2版)

    • Python计算机视觉编程 [美] Jan Erik Solem

    • python核心编程(第三版)

    • Python核心编程(第二版)

    • Python高手之路 - [法] 朱利安·丹乔(Julien Danjou)

    • Python编程快速上手 让繁琐工作自动化

    • Python编程:从入门到实践

    • Python3 CookBook中文版

    • 终极算法机器学习和人工智能如何重塑世界 - [美 ]佩德罗·多明戈斯

    • 机器学习系统设计 (图灵程序设计丛书) - [美]Willi Richert & Luis Pedro Coelho

    • 机器学习实践指南:案例应用解析(第2版) (大数据技术丛书) - 麦好

    • 机器学习实践 测试驱动的开发方法 (图灵程序设计丛书) - [美] 柯克(Matthew Kirk)

    • 机器学习:实用案例解析

  • 数学:

    • Algebra - Michael Artin

    • Algebra - Serge Lang

    • Basic Topology - M.A. Armstrong

    • Convex Optimization by Stephen Boyd & Lieven Vandenberghe

    • Functional Analysis by Walter Rudin

    • Functional Analysis, Sobolev Spaces and Partial Differential Equations by Haim Brezis

    • Graph Theory - J.A. Bondy, U.S.R. Murty

    • Graph Theory - Reinhard Diestel

    • Inside Interesting Integrals - Pual J. Nahin

    • Linear Algebra and Its Applications - Gilbert Strang

    • Linear and Nonlinear Functional Analysis with Applications - Philippe G. Ciarlet

    • Mathematical Analysis I - Vladimir A. Zorich

    • Mathematical Analysis II - Vladimir A. Zorich

    • Mathematics for Computer Science - Eric Lehman, F Thomson Leighton, Alber R Meyer

    • Matrix Cookbook, The - Kaare Brandt Petersen, Michael Syskind Pedersen

    • Measures, Integrals and Martingales - René L. Schilling

    • Principles of Mathematical Analysis - Walter Rudin

    • Probabilistic Graphical Models: Principles and Techniques - Daphne Koller, Nir Friedman

    • Probability: Theory and Examples - Rick Durrett

    • Real and Complex Analysis - Walter Rudin

    • Thomas' Calculus - George B. Thomas

    • 普林斯顿微积分读本 - Adrian Banner

  • Packt每日限免电子书精选:

    • Learning Data Mining with Python

    • Matplotlib for python developers

    • Machine Learing with Spark

    • Mastering R for Quantitative Finance

    • Mastering matplotlib

    • Neural Network Programming with Java

    • Python Machine Learning

    • R Data Visualization Cookbook

    • R Deep Learning Essentials

    • R Graphs Cookbook second edition

    • D3.js By Example

    • Data Analysis With R

    • Java Deep Learning Essentials

    • Learning Bayesian Models with R

    • Learning Pandas

    • Python Parallel Programming Cookbook

    • Machine Learning with R


其他 Miscellaneous


如何加入 How to contribute

如果你对本项目感兴趣,非常欢迎你加入!

  • 正常参与:请直接fork、pull都可以
  • 如果要上传文件:请不要直接上传到项目中,否则会造成git版本库过大。正确的方法是上传它的超链接。如果你要上传的文件本身就在网络中(如paper都会有链接),直接上传即可;如果是自己想分享的一些文件、数据等,鉴于国内网盘的情况,请按照如下方式上传:
    • (墙内)目前没有找到比较好的方式,只能通过链接,或者自己网盘的链接来做。
    • (墙外)首先在UPLOAD直接上传(需要注册账号);上传成功后,在DOWNLOAD里找到你刚上传的文件,共享链接即可。

如何开始项目协同合作

快速了解github协同工作

及时更新fork项目