Note: This project is pytorch implementation of RFCN, Resnet101_without_dilation. This project is mainly based on faster_rcnn_pytorch, while psroi_pooling modules is copied from another pytorch version of RFCN, pytorch_RFCN
Difference Since dilation isn't used in resnet, so the space_scale is 1/32.0 in psroi_pooling, not 1/16.0 in original paper. As result, I set SCALES=800 and MAX_SIZE=1200.
-
Install the requirements (you can use pip or Anaconda):
conda install pip pyyaml sympy h5py cython numpy scipy conda install -c menpo opencv3 pip install easydict
-
Clone the Faster RFCN repository
git clone https://github.com/xingmimfl/pytorch_RFCN.git
-
Build the Cython modules for nms and the roi_pooling layer
cd pytorch_RFCN/faster_rcnn ./make.sh
This project use ResNet-101 model converted from Caffe, and you can get it following RuotianLuo-pytorch-ResNet.
Since the program loading the data in pytorch_RFCN/data
by default,
you can set the data path as following.
cd pytorch_RFCN
mkdir data
cd data
ln -s $VOCdevkit VOCdevkit2007
Then you can set some hyper-parameters in train.py
and training parameters in the .yml
file.
Set the path of the trained model in test.py
.
cd pytorch_RFCN
python demo.py
License: MIT license (MIT)