Thank you very much ! what do you use when you generate the groundtruth of kitti?
anjingde opened this issue · 3 comments
anjingde commented
Thank you very much ! what do you use when you generate the groundtruth of kitti?
anjingde commented
disp_noc or disp_occ ?
anjingde commented
I have got the ground truth of kitti by my code. but it is different from yours. .the ground truth generated by optical flow is different from the frame2 and the ground truth you submit.I need your help,
the parameters: focal length=(721 or 718)cx and cy is from calib.
KevinYuk commented
Hi @anjingde ,
I have done this.
Origin kitti dataset looks like below:
gt
[[-6.50606757e-01 -7.71165091e-03 -3.62864930e-02]
[-6.50809720e-01 -7.30375763e-03 -3.70871616e-02]
[-6.50674281e-01 -7.18719799e-03 -3.67654337e-02]
...
[-6.55581403e-01 8.44116230e-04 -3.59173445e-02]
[-6.55385991e-01 5.79053468e-04 -3.66829281e-02]
[-6.55479329e-01 7.85820204e-04 -3.61007760e-02]]
pos2
[[ 4.180698 -3.539728 0.444983]
[ 4.307996 -3.632413 0.450001]
[ 4.286587 -3.650779 0.447844]
...
[ 4.354905 -3.593129 -1.096776]
[ 4.336965 -3.593943 -1.093356]
[ 4.329097 -3.59527 -1.091642]]
pos1
[[ 4.83130534 -3.532016 0.48126939]
[ 4.95880602 -3.62510927 0.48708832]
[ 4.93726086 -3.64359158 0.48460908]
...
[ 5.03660353 -3.57625679 -1.10740632]
[ 5.00526341 -3.59551057 -1.10095203]
[ 4.956746 -3.60848824 -1.09762046]]
However, we could convert it to something like below :
points1
len: 8192
shape: (8192, 3)
[[ 32.89994602 -21.54203147 0.56550137]
[ 14.09534998 -4.2294481 0.35370887]
[ 24.83187046 8.32069612 -0.17390744]
...
[ 23.21345089 13.56470163 0.92837002]
[ 14.26954007 -3.94390863 0.24294891]
[ 14.2666964 -5.4370993 -0.36596146]]
color2
len: 8192
shape: (8192, 3)
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
...
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
flow
len: 8192
shape: (8192, 3)
[[ 0.10617779 0.88679647 -0.03811332]
[-0.44350357 0.79123925 -0.03079318]
[-0.68674987 0.66008707 -0.03754272]
...
[-0.8204942 0.61661119 -0.0367588 ]
[-0.44902221 0.79157176 -0.03023025]
[-0.41408755 0.79796613 -0.02728917]]
points2
len: 8192
shape: (8192, 3)
[[ 14.03455843 -4.34205603 0.5828345 ]
[ 13.89293276 -4.25363464 0.41936948]
[ 22.52683529 14.04049128 -0.40132041]
...
[ 31.62114953 -15.78595999 0.24209763]
[ 8.56035903 -6.42638545 -0.70365567]
[ 26.94402805 -0.68263973 0.03776928]]
color1
len: 8192
shape: (8192, 3)
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
...
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
valid_mask1
len: 8192
shape: (8192,)
[ True True True ... True True True]
Trans code:
'''
Provider for duck dataset from xingyu liu
'''
import os
import os.path
import json
import numpy as np
import sys
import pickle
import glob
class SceneflowDataset():
def __init__(self, root='./', npoints=2048, train=True):
self.npoints = npoints
self.train = train
self.root = root
self.datapath = glob.glob(os.path.join(self.root, '*.npz'))
self.cache = {}
self.cache_size = 30000
###### deal with one bad datapoint with nan value
#self.datapath = [d for d in self.datapath if 'TRAIN_C_0140_left_0006-0' not in d]
######
def __getitem__(self, index):
if index in self.cache:
#pos1, pos2, color1, color2, flow, mask1 = self.cache[index]
pos1, pos2, gt = self.cache[index]
else:
fn = self.datapath[index]
with open(fn, 'rb') as fp:
data = np.load(fp)
pos1 = data['pos1']
pos2 = data['pos2']
color1 = np.zeros(pos1.shape)
color2 = np.zeros(pos2.shape)
flow = data['gt']
mask1 = np.ones(len(pos1), dtype = bool)
if len(self.cache) < self.cache_size:
self.cache[index] = (pos1, pos2, color1, color2, flow, mask1)
if self.train:
n1 = pos1.shape[0]
sample_idx1 = np.random.choice(n1, self.npoints, replace=False)
n2 = pos2.shape[0]
sample_idx2 = np.random.choice(n2, self.npoints, replace=False)
pos1 = pos1[sample_idx1, :]
pos2 = pos2[sample_idx2, :]
color1 = color1[sample_idx1, :]
color2 = color2[sample_idx2, :]
flow = flow[sample_idx1, :]
mask1 = mask1[sample_idx1]
else:
pos1 = pos1[:self.npoints, :]
pos2 = pos2[:self.npoints, :]
color1 = color1[:self.npoints, :]
color2 = color2[:self.npoints, :]
flow = flow[:self.npoints, :]
mask1 = mask1[:self.npoints]
return pos1, pos2, color1, color2, flow, mask1
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
d = SceneflowDataset(npoints=2048*4)
print('len of SceneflowDataset: ', len(d))
import time
tic = time.time()
for i in range(len(d)):
print('i: ', i)
pc1, pc2, c1, c2, flow, m1 = d[i]
npz_file = 'trans/trans_' + str(i) + '.npz'
np.savez(npz_file, points1 = pc1, points2 = pc2, color1 = c1, color2 = c2, flow = flow, valid_mask1 = m1)
print(npz_file + ' DONE!')