RELIABLE CLUSTER-BASED FRAMEWORK FOR OPEN SET DOMAIN ADAPTATION
Explanation
To verify the effectiveness of our method, we provide the model trained on the Office-Home and Office31 datasets along with the associated verification code.
Environment
- Python 3.6
- cuda9.2 + cudnn7.6.3
- GPU: two GeForce GTX 1080 Ti
- pytorch 1.7.0
Requirements
conda install --yes --file requirements.txt
Dataset
Download the dataset Office-Home:(https://pan.baidu.com/s/15NzPj74XMDG0fLbyvgkYjA?pwd=ehgi ,Extract code:ehgi) Download the dataset Office31:(https://pan.baidu.com/s/1RWiluvan05EDjrkbayzmMQ?pwd=fwan ,Extract code:fwan )
Data Folder structure:
Your dataset DIR:
|-OfficeHome
| |-Art
| |-Product
| |-...
|-Office
| |-...
You need to modify 'root' in the config file './config/oh_pcs.json'.
You need to move the pretrained model to './model_weights/'
Validation
office-home model weights download: (https://pan.baidu.com/s/1vbMSYXMlJAbWJMuwrxNsrA?pwd=u4d3 ,Extract code:u4d3)
Validation on Office-Home:
P->R
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Product target=RealWorld init_weight='./model_weights/Pr_Rw.pth'
R->P
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=RealWorld target=Product init_weight='./model_weights/Rw_Pr.pth'
C->R
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Clipart target=RealWorld init_weight='./model_weights/Cl_Rw.pth'
C->P
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Clipart target=Product init_weight='./model_weights/Cl_Pr.pth'
C->A
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Clipart target=Art init_weight='./model_weights/Cl_Ar.pth'
P->C
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Product target=Clipart init_weight='./model_weights/Pr_Cl.pth'
P->A
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Product target=Art init_weight='./model_weights/Pr_Ar.pth'
R->A
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=RealWorld target=Art init_weight='./model_weights/Rw_Ar.pth'
R->C
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=RealWorld target=Clipart init_weight='./model_weights/Rw_Cl.pth'
A->C
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Art target=Clipart init_weight='./model_weights/Ar_Cl.pth'
A->P
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Art target=Product init_weight='./model_weights/Ar_Pr.pth'
A->R
CUDA_VISIBLE_DEVICES=0,1 python officehome_validation.py note=validation multi_gpu=1 source=Art target=RealWorld init_weight='./model_weights/Ar_Rw.pth'
office31 model weights download: (https://pan.baidu.com/s/1OTjyjSOsgJHFihCPskW5bQ?pwd=05ed ,Extract code:05ed )
Validation on Office31:
A->W
CUDA_VISIBLE_DEVICES=0,1 python office_validation.py note=validation multi_gpu=1 source=amazon target=webcam init_weight='./model_weights/am_we.pth'
A->D
CUDA_VISIBLE_DEVICES=0,1 python office_validation.py note=validation multi_gpu=1 source=amazon target=dslr init_weight='./model_weights/am_ds.pth'
W->D
CUDA_VISIBLE_DEVICES=0,1 python office_validation.py note=validation multi_gpu=1 source=webcam target=dslr init_weight='./model_weights/we_ds.pth'
W->A
CUDA_VISIBLE_DEVICES=0,1 python office_validation.py note=validation multi_gpu=1 source=webcam target=amazon init_weight='./model_weights/we_am.pth'
D->A
CUDA_VISIBLE_DEVICES=0,1 python office_validation.py note=validation multi_gpu=1 source=dslr target=amazon init_weight='./model_weights/ds_am.pth'
D->W
CUDA_VISIBLE_DEVICES=0,1 python office_validation.py note=validation multi_gpu=1 source=dslr target=webcam init_weight='./model_weights/ds_we.pth'
The final results will be saved in the './snapshot/validation/result.txt. '