fast, high peformance image processing libary.
blurry
provides image processing algorithms with halide-lang backend.
implements optimized processor for amd64 CPUs on Linux/macos
This is the result of using halide's benchamrk.
darwin/amd64 Intel(R) Core(TM) i7-8569U CPU @ 2.80GHz
src 320x240
BenchmarkJIT/cloneimg : 0.00767ms
BenchmarkJIT/convert_from_argb : 0.02335ms
BenchmarkJIT/convert_from_abgr : 0.03712ms
BenchmarkJIT/convert_from_bgra : 0.02362ms
BenchmarkJIT/convert_from_rabg : 0.03165ms
BenchmarkJIT/convert_from_yuv_420 : 0.02848ms
BenchmarkJIT/convert_from_yuv_444 : 0.02538ms
BenchmarkJIT/convert_to_yuv_444 : 0.15939ms
BenchmarkJIT/rotate0 : 0.00776ms
BenchmarkJIT/rotate90 : 0.02621ms
BenchmarkJIT/rotate180 : 0.00739ms
BenchmarkJIT/rotate270 : 0.02624ms
BenchmarkJIT/crop : 0.05598ms
BenchmarkJIT/scale : 0.04718ms
BenchmarkJIT/scale_box : 0.07704ms
BenchmarkJIT/scale_linear : 0.07382ms
BenchmarkJIT/scale_gaussian : 0.09483ms
BenchmarkJIT/blend_normal : 0.07561ms
BenchmarkJIT/blend_sub : 0.07654ms
BenchmarkJIT/blend_add : 0.07503ms
BenchmarkJIT/blend_diff : 0.07699ms
BenchmarkJIT/grayscale : 0.03702ms
BenchmarkJIT/invert : 0.03566ms
BenchmarkJIT/brightness : 0.04141ms
BenchmarkJIT/gammacorrection : 0.07959ms
BenchmarkJIT/contrast : 0.01459ms
BenchmarkJIT/boxblur : 0.11553ms
BenchmarkJIT/gaussianblur : 0.18224ms
BenchmarkJIT/blockmozaic : 0.26195ms
BenchmarkJIT/erosion : 0.12033ms
BenchmarkJIT/dilation : 0.12586ms
BenchmarkJIT/morphology_open : 0.10494ms
BenchmarkJIT/morphology_close : 0.10196ms
BenchmarkJIT/morphology_gradient : 0.08061ms
BenchmarkJIT/emboss$1 : 0.04667ms
BenchmarkJIT/laplacian : 0.03224ms
BenchmarkJIT/highpass : 0.03940ms
BenchmarkJIT/gradient : 0.03376ms
BenchmarkJIT/edgedetect : 0.02602ms
BenchmarkJIT/sobel : 0.06334ms
BenchmarkJIT/canny : 0.28707ms
BenchmarkJIT/canny_dilate : 0.36491ms
BenchmarkJIT/canny_morphology_open : 0.39379ms
BenchmarkJIT/canny_morphology_close : 0.39387ms
BenchmarkJIT/match_template_sad : 5.70232ms
BenchmarkJIT/match_template_ssd : 4.55996ms
BenchmarkJIT/match_template_ncc : 8.41311ms
BenchmarkJIT/prepared_match_template_ncc : 6.15969ms
BenchmarkJIT/match_template_zncc : 12.15370ms
BenchmarkJIT/prepared_match_template_zncc : 10.93124ms
Calling a library compiled by AOT(ahead-of-time) via cgo.
In cgo, due to the overhead of ffi calls(e.g.),
more complex operations will be optimized for CPU and become faster.
Also, the execution speed may be reduced by the overhead of multiple calls.
/D
is DisablePool, i.e. the benchmark when BufferPool is off.
goos: darwin
goarch: amd64
pkg: github.com/octu0/blurry/benchmark
cpu: Intel(R) Core(TM) i7-8569U CPU @ 2.80GHz
BenchmarkBlur
BenchmarkBlur/bild/blur/Box
BenchmarkBlur/bild/blur/Box-8 154 7812824 ns/op 640402 B/op 11 allocs/op
BenchmarkBlur/bild/blur/Gaussian
BenchmarkBlur/bild/blur/Gaussian-8 333 3486751 ns/op 1262485 B/op 21 allocs/op
BenchmarkBlur/imaging/Blur
BenchmarkBlur/imaging/Blur-8 786 1520193 ns/op 793698 B/op 45 allocs/op
BenchmarkBlur/stackblur-go
BenchmarkBlur/stackblur-go-8 231 5147219 ns/op 925937 B/op 153609 allocs/op
BenchmarkBlur/libyuv/ARGBBlur
BenchmarkBlur/libyuv/ARGBBlur-8 1861 642486 ns/op 10182722 B/op 3 allocs/op
BenchmarkBlur/blurry/Boxblur
BenchmarkBlur/blurry/Boxblur-8 7257 178086 ns/op 88 B/op 2 allocs/op
BenchmarkBlur/blurry/Gaussianblur
BenchmarkBlur/blurry/Gaussianblur-8 5367 222615 ns/op 146 B/op 2 allocs/op
BenchmarkBlur/blurry/Boxblur/D
BenchmarkBlur/blurry/Boxblur/D-8 6093 201573 ns/op 311361 B/op 2 allocs/op
BenchmarkBlur/blurry/Gaussianblur/D
BenchmarkBlur/blurry/Gaussianblur/D-8 4629 257483 ns/op 311361 B/op 2 allocs/op
goos: darwin
goarch: amd64
pkg: github.com/octu0/blurry/benchmark
cpu: Intel(R) Core(TM) i7-8569U CPU @ 2.80GHz
BenchmarkEdge
BenchmarkEdge/bild/EdgeDetection
BenchmarkEdge/bild/EdgeDetection-8 643 1858350 ns/op 631257 B/op 10 allocs/op
BenchmarkEdge/blurry/Edge
BenchmarkEdge/blurry/Edge-8 10000 100695 ns/op 311513 B/op 3 allocs/op
goos: darwin
goarch: amd64
pkg: github.com/octu0/blurry/benchmark
cpu: Intel(R) Core(TM) i7-8569U CPU @ 2.80GHz
BenchmarkRotate
BenchmarkRotate/bild/Rotate/90
BenchmarkRotate/bild/Rotate/90-8 612 2080543 ns/op 1237046 B/op 115685 allocs/op
BenchmarkRotate/bild/Rotate/180
BenchmarkRotate/bild/Rotate/180-8 480 2355424 ns/op 1540311 B/op 153605 allocs/op
BenchmarkRotate/bild/Rotate/270
BenchmarkRotate/bild/Rotate/270-8 520 2061518 ns/op 1236932 B/op 115685 allocs/op
BenchmarkRotate/imaging/90
BenchmarkRotate/imaging/90-8 7918 130736 ns/op 314181 B/op 6 allocs/op
BenchmarkRotate/imaging/180
BenchmarkRotate/imaging/180-8 9654 138252 ns/op 313542 B/op 6 allocs/op
BenchmarkRotate/imaging/270
BenchmarkRotate/imaging/270-8 6972 163349 ns/op 314165 B/op 6 allocs/op
BenchmarkRotate/libyuv/ARGBRotate/90
BenchmarkRotate/libyuv/ARGBRotate/90-8 13423 81131 ns/op 311360 B/op 2 allocs/op
BenchmarkRotate/libyuv/ARGBRotate/180
BenchmarkRotate/libyuv/ARGBRotate/180-8 34771 34425 ns/op 311361 B/op 2 allocs/op
BenchmarkRotate/libyuv/ARGBRotate/270
BenchmarkRotate/libyuv/ARGBRotate/270-8 15904 78290 ns/op 311361 B/op 2 allocs/op
BenchmarkRotate/blurry/Rotate/90
BenchmarkRotate/blurry/Rotate/90-8 10000 109336 ns/op 311514 B/op 3 allocs/op
BenchmarkRotate/blurry/Rotate/180
BenchmarkRotate/blurry/Rotate/180-8 13102 89067 ns/op 311514 B/op 3 allocs/op
BenchmarkRotate/blurry/Rotate/270
BenchmarkRotate/blurry/Rotate/270-8 10000 124949 ns/op 311514 B/op 3 allocs/op
goos: darwin
goarch: amd64
pkg: github.com/octu0/blurry/benchmark
cpu: Intel(R) Core(TM) i7-8569U CPU @ 2.80GHz
BenchmarkSobel
BenchmarkSobel/bild/Sobel
BenchmarkSobel/bild/Sobel-8 208 5707148 ns/op 2196784 B/op 32 allocs/op
BenchmarkSobel/libyuv/ARGBSobel
BenchmarkSobel/libyuv/ARGBSobel-8 16557 72320 ns/op 311361 B/op 2 allocs/op
BenchmarkSobel/blurry/Sobel
BenchmarkSobel/blurry/Sobel-8 9255 140586 ns/op 311515 B/op 3 allocs/op
See _benchmark for benchmarks of other methods and performance comparison with libyuv.
$ go get github.com/octu0/blurry
original image
rotation 0/90/180/270 clockwise
img, err := blurry.Rotate(input, blurry.Rotate90)
blurry.RotationMode |
Result |
---|---|
blurry.Rotate90 |
![]() |
blurry.Rotate180 |
![]() |
blurry.Rotate270 |
![]() |
crop x,y with crop_width,crop_height
img, err := blurry.Crop(input, image.Pt(175, 40), crop_width, crop_height)
original | x=175,y=40,cw=80,ch=50 |
---|---|
![]() |
![]() |
a.k.a. Resize resampling
img, err := blurry.Scale(input, scale_width, scale_height, blurry.ScaleFilterNone)
blurry.ScaleFilter |
Result |
---|---|
blurry.ScaleFilterNone |
![]() |
blurry.ScaleFilterBox |
![]() |
blurry.ScaleFilterLinear |
![]() |
blurry.ScaleFilterGaussian |
![]() |
img, err := blurry.Grayscale(input)
img, err := blurry.Invert(input)
img, err := blurry.Brightness(input, 1.5)
img, err := blurry.Gamma(input, 2.5)
img, err := blurry.Contrast(input, 0.525)
img, err := blurry.Boxblur(input, 11)
img, err := blurry.Gaussianblur(input, 5.0)
img, err := blurry.Blockmozaic(input, 10)
img, err := blurry.Erosion(input, 5)
img, err := blurry.Dilation(input, 8)
Morphology repeats Erode and Dilate N times.
size := 5
N := 2
img, err := blurry.Morphology(input, MorphOpen, size, N)
blurry.MorphologyMode |
Result |
---|---|
blurry.MorphologyOpen |
![]() |
blurry.MorphologyClose |
![]() |
blurry.MorphologyGradient |
![]() |
img, err := blurry.Emboss(input)
img, err := blurry.Highpass(input)
img, err := blurry.Laplacian(input)
img, err := blurry.Gradient(input)
a.k.a. Edge Detection
img, err := blurry.Edge(input)
img, err := blurry.Sobel(input)
a.k.a. Canny Edge Detection
img, err := blurry.Canny(input, 250, 100)
max:250 min:100 |
max:400 min:10 |
---|---|
![]() |
![]() |
img, err := blurry.CannyWithDilate(input, 250, 100, 3)
max:250 min:100 dilate:3 |
max:250 min:150 dilate:4 |
---|---|
![]() |
![]() |
Pre-process morphology before applying Canny process.
mode := blurry.CannyMorphologyClose
morph_size := 5
dilate_size := 3
img, err := blurry.MorphologyCannyWithDilate(input, 250, 100, mode, morph_size, dilate_size);
blurry.CannyMorphologyMode |
Result |
---|---|
blurry.CannyMorphologyOpen |
![]() |
blurry.CannyMorphologyClose |
![]() |
SAD(Sum of Absolute Difference), SSD(Sum of Squared Difference), NCC(Normalized Cross Correlation) AND ZNCC(Zero means Normalized Cross Correlation) methods are available for template matching.
scores, err := blurry.MatchTemplateSAD(input, template, 1000)
filter | input | template | Result |
---|---|---|---|
none |
![]() |
![]() |
![]() |
grayscale |
![]() |
![]() |
![]() |
sobel |
![]() |
![]() |
![]() |
canny dilate:3 morph:open |
![]() |
![]() |
![]() |
scores, err := blurry.MatchTemplateSSD(input, template, 1000)
filter | input | template | Result |
---|---|---|---|
none |
![]() |
![]() |
![]() |
grayscale |
![]() |
![]() |
![]() |
sobel |
![]() |
![]() |
![]() |
canny dilate:3 morph:open |
![]() |
![]() |
![]() |
scores, err := blurry.MatchTemplateNCC(input, template, 0.1)
filter | input | template | Result |
---|---|---|---|
none |
![]() |
![]() |
![]() |
grayscale |
![]() |
![]() |
![]() |
sobel |
![]() |
![]() |
![]() |
canny dilate:3 morph:open |
![]() |
![]() |
![]() |
Improve processing speed by pre-calculating part of NCC process.
p, err := blurry.PrepareNCCTemplate(template)
if err != nil {
panic(err)
}
defer blurry.FreePreparedNCCTemplate(p)
for _, img := range images {
scores, err := blurry.PreparedMatchTemplateNCC(img, p, 0.1)
if err != nil {
panic(err)
}
}
scores, err := blurry.MatchTemplateZNCC(input, template, 0.1)
filter | input | template | Result |
---|---|---|---|
none |
![]() |
![]() |
![]() |
grayscale |
![]() |
![]() |
![]() |
sobel |
![]() |
![]() |
![]() |
canny dilate:3 morph:open |
![]() |
![]() |
![]() |
Improve processing speed by pre-calculating part of ZNCC process.
p, err := blurry.PrepareZNCCTemplate(template)
if err != nil {
panic(err)
}
defer blurry.FreePreparedZNCCTemplate(p)
for _, img := range images {
scores, err := blurry.PreparedMatchTemplateZNCC(img, p, 0.1)
if err != nil {
panic(err)
}
}
Blend input1 on input0.
img, err := blurry.Blend(input0, input1, image.Pt(76, 36), blurry.BlendNormal)
blurry.BlendMode |
Result |
---|---|
blurry.BlendNormal |
![]() |
blurry.BlendSub |
![]() |
blurry.BlendAdd |
![]() |
blurry.BlendDiff |
![]() |
blurry supports reading ARGB, ABGR, BGRA, YUV420 and YUV444.
It also supports YUV444 output.
img, err := blurry.ConvertFromARGB(input)
ColorModel | Method |
---|---|
ARGB | blurry.ConvertFromARGB(*image.RGBA) |
ABGR | blurry.ConvertFromABGR(*image.RGBA) |
BGRA | blurry.ConvertFromBGRA(*image.RGBA) |
RABG | blurry.ConvertFromRABG(*image.RGBA) |
img, err := blurry.ConvertFromYUV420(ycbcr)
Subsampling | Method |
---|---|
420 | blurry.ConvertFromYUV420(*image.YCbCr) |
444 | blurry.ConvertFromYUV444(*image.YCbCr) |
or byte slice can also be specified
var y,u,v []byte
var strideY,strideU,strideV int
var width, height int
img, err := blurry.ConvertFromYUV420Plane(y, u, v, strideY, strideU, strideV, width, height)
Subsampling | Method |
---|---|
420 | blurry.ConvertFromYUV420Plane(y,u,v []byte, int,int,int, w,h int) |
444 | blurry.ConvertFromYUV444Plane(y,u,v []byte, int,int,int, w,h int) |
ycbcr, err := blurry.ConvertToYUV444(rgba)
Subsampling | Method |
---|---|
444 | blurry.ConvertToYUV420(*image.RGBA) |
Run it via docker.
Use docker run -v
to specify where to load the images and where to output them (/tmp
will be used as a temporary file).
$ mkdir myimagedir
$ mkdir myimageout
$ cp /from/img/path.png myimagedir/src.png
# grayscale
$ docker run --rm -it \
-v $PWD/myimagedir:/img \
-v $PWD/myimageout:/tmp \
blurry:1.0.0 grayscale -i /img/src.png
NAME:
blurry
USAGE:
blurry [global options] command [command options] [arguments...]
VERSION:
1.18.4
COMMANDS:
blend
blockmozaic
boxblur
brightness
canny
clone
contrast
convert
convert_from_yuv
convert_to_yuv
crop
dilation
edge
emboss
erosion
gamma
gaussianblur
gradient
grayscale
highpass
invert
laplacian
morphology
match_template
rotate
scale
sobel
help, h Shows a list of commands or help for one command
GLOBAL OPTIONS:
--debug, -d debug mode
--verbose, -V verbose. more message
--help, -h show help
--version, -v print the version
When building, create a docker container with Halide(clang, llvm, etc). installed as the build environment.
$ make build-generator
Compile libruntime.a
and all kinds lib*_osx.a
or lib*_linu.a
to make static link.
$ make generate
Finally, generate a docker image if necessary.
$ make build
Set up configuration for macos to be able to run image filtering directly through Halide.
$ make setup-halide-runtime
genrun
package allows you to export images to temporary file and run image filtering directly.
$ go run cmd/genrun/main.go benchmark
MIT, see LICENSE file for details.