Cyclical Self-Supervision for Semi-Supervised Ejection Fraction Prediction from Echocardiogram Videos
This is the implementation of CSS for Semi-Supervised Ejection Fraction Prediction for the paper "Cyclical Self-Supervision for Semi-Supervised Ejection Fraction Prediction from Echocardiogram Videos".
Researchers can request the EchoNet-Dynamic dataset at https://echonet.github.io/dynamic/ and set the directory path in the configuration file, echonet.cfg
.
It is recommended to use PyTorch conda
environments for running the program. A requirements file has been included.
The code must first be installed by running
pip3 install --user .
under the repository directory CSS-SemiVideo
. Training consists of three components:
echonet seg_cycle --batch_size=20 --output=output/css_seg --loss_cyc_w=0.01 --num_epochs=25 --rd_label=920 --rd_unlabel=6440 --run_test --reduced_set
The LV segmentation prediction masks of all frames must be inferred for the second stage. To do so, run:
echonet seg_cycle --batch_size=20 --output=output/css_seg --loss_cyc_w=0.01 --num_epochs=25 --rd_label=920 --rd_unlabel=6440 --skip_test --reduced_set --run_inference=train
echonet seg_cycle --batch_size=20 --output=output/css_seg --loss_cyc_w=0.01 --num_epochs=25 --rd_label=920 --rd_unlabel=6440 --skip_test --reduced_set --run_inference=val
echonet seg_cycle --batch_size=20 --output=output/css_seg --loss_cyc_w=0.01 --num_epochs=25 --rd_label=920 --rd_unlabel=6440 --skip_test --reduced_set --run_inference=test
The segmentation prediction outputs will be located under the output folder output/css_seg
. To reduce installation time for EchoNet-Dynamic, these are moved to a separatate directory parallel to CSS-SemiVideo
, i.e. CSS-SemiVideo/../infer_buffers/css_seg
. Segmentation masks are also sourced from this location for Step 2 of the framework.
To do this, run:
mkdir ../infer_buffers/css_seg
mv output/css_seg/*_infer_cmpct ../infer_buffers/css_seg/
echonet video_segin --frames=32 --model_name=r2plus1d_18 --period=2 --batch_size=20 --output=output/teacher_model --num_epochs=25 --rd_label=920 --rd_unlabel=6440 --run_test --segsource=css_seg
echonet vidsegin_teachstd_kd --frames=32 --model_name=r2plus1d_18 --period=2 --batch_size=20 --output=output/end2end_model --num_epochs=25 --rd_label=920 --rd_unlabel=6440 --run_test --reduced_set --max_block=20 --segsource=css_seg --w_unlb=5 --batch_size_unlb=10 --weights_0=output/teacher_model/best.pt
Trained checkpoints and models can be downloaded from:
-
CSS for semi-supervised segmentation: https://hkustconnect-my.sharepoint.com/:f:/g/personal/wdaiaj_connect_ust_hk/EqiP-N0MDRZGlwqr5PeZUrYBtLki8QWtBlMqRK1FNkjbcw?e=DIpkIm
-
Multi-modal LVEF regression: https://hkustconnect-my.sharepoint.com/:f:/g/personal/wdaiaj_connect_ust_hk/ErxaHepi4ndAnMcvSOwTH5wBDI6rHypqdcBiXF8B0XYvmg?e=Rud7Pf
-
Teacher-student distillation: https://hkustconnect-my.sharepoint.com/:f:/g/personal/wdaiaj_connect_ust_hk/Ev7mQ1ReI05LtiDIqQu1IpYBC6xN4R47PsYnhDUQr4n3fw?e=US4caq
To run with the pretrained model weights, replace the .pts
files in the target output directory with the downloaded files.
Experiments | MAE | RMSE | R2 |
---|---|---|---|
Multi-Modal | 5.13 ± 0.05 | 6.90 ± 0.07 | 67.6% ± 0.5 |
Teacher-student Distillation | 4.90 ± 0.04 | 6.57 ± 0.06 | 71.1% ± 0.4 |
- Contact: DAI Weihang (wdai03@gmail.com)
If this code is useful for your research, please consider citing:
(to be released)