/retinamask

RetinaMask

Primary LanguagePythonMIT LicenseMIT

RetinaMask

The code is based on the maskrcnn-benchmark.

alt text

Citing RetinaMask

Please cite RetinaMask in your publications if it helps your research:

@inproceedings{fu2019retinamask,
  title = {{RetinaMask}: Learning to predict masks improves state-of-the-art single-shot detection for free},
  author = {Fu, Cheng-Yang and  Shvets, Mykhailo and Berg, Alexander C.},
  booktitle = {arXiv preprint arXiv:1901.03353},
  year = {2019}
}

Contents

  1. Installation
  2. Models

Installation

Follow the maskrcnn-benchmark to install code and set up the dataset. Use config files in ./configs/retina/ for Training and Testing.

Models

Models BBox B(time) Mask M(time) Link
ResNet-50-FPN 39.4/58.6/42.3/21.9/42.0/51.0 0.124 34.9/55.7/37.1/15.1/36.7/50.4 0.139 link
ResNet-101-FPN 41.4/ 60.8/44.6/23.0/44.5/53.5 0.145 36.6/58.0/39.1/16.2/38.8/52.7 0.160 link
ResNet-101-FPN-GN 41.7/61.7/45.0/23.5/44.7/52.8 0.153 36.7/58.8/39.3/16.4/39.4/52.6 0.164 link
ResNeXt32x8d-101-FPN-GN 42.6/62.5/46.0/24.8/45.6/53.8 0.231 37.4/59.8/40.0/17.6/39.9/53.4 0.270 link

P.S. evaluation metric: AP, AP50, AP75, AP(small), AP(medium), AP(large), please refer to COCO for detailed explanation. The inference time is measured on Nvidia 1080Ti.

Run Inference

Use the following scripts. (Assume models are download to the ./models directory) Run Mask and BBox

python tools/test_net.py --config-file ./configs/retina/retinanet_mask_R-50-FPN_2x_adjust_std011_ms.yaml MODEL.WEIGHT ./models/retinanet_mask_R-50-FPN_2x_adjust_std011_ms_model.pth

Run BBox only

python tools/test_net.py --config-file ./configs/retina/retinanet_mask_R-50-FPN_2x_adjust_std011_ms.yaml MODEL.WEIGHT ./models/retinanet_mask_R-50-FPN_2x_adjust_std011_ms_model.pth MODEL.MASK_ON False