This repository is implementation of the "Image Super-Resolution Using Deep Convolutional Networks".
- Added the zero-padding
- Used the Adam instead of the SGD
- Removed the weights initialization
- PyTorch 1.0.0
- Numpy 1.15.4
- Pillow 5.4.1
- h5py 2.8.0
- tqdm 4.30.0
The 91-image, Set5 dataset converted to HDF5 can be downloaded from the links below.
Dataset | Scale | Type | Link |
---|---|---|---|
91-image | 2 | Train | Download |
91-image | 3 | Train | Download |
91-image | 4 | Train | Download |
Set5 | 2 | Eval | Download |
Set5 | 3 | Eval | Download |
Set5 | 4 | Eval | Download |
Otherwise, you can use prepare.py
to create custom dataset.
python train.py --train-file "BLAH_BLAH/91-image_x3.h5" \
--eval-file "BLAH_BLAH/Set5_x3.h5" \
--outputs-dir "BLAH_BLAH/outputs" \
--scale 3 \
--lr 1e-4 \
--batch-size 16 \
--num-epochs 400 \
--num-workers 8 \
--seed 123
Pre-trained weights can be downloaded from the links below.
Model | Scale | Link |
---|---|---|
9-5-5 | 2 | Download |
9-5-5 | 3 | Download |
9-5-5 | 4 | Download |
The results are stored in the same path as the query image.
python test.py --weights-file "BLAH_BLAH/srcnn_x3.pth" \
--image-file "data/butterfly_GT.bmp" \
--scale 3
We used the network settings for experiments, i.e., .
PSNR was calculated on the Y channel.
Eval. Mat | Scale | SRCNN | SRCNN (Ours) |
---|---|---|---|
PSNR | 2 | 36.66 | 36.65 |
PSNR | 3 | 32.75 | 33.29 |
PSNR | 4 | 30.49 | 30.25 |
Original | BICUBIC x3 | SRCNN x3 (27.53 dB) |
Original | BICUBIC x3 | SRCNN x3 (29.30 dB) |
Original | BICUBIC x3 | SRCNN x3 (28.58 dB) |