Table of contents
Deep Sort with PyTorch(yolo-all)
Introduction
This is an implement of MOT tracking algorithm deep sort. This project originates from deep_sort_pytorch. On the above projects, this project add the existing yolo detection model algorithm (YOLOv3, YOLOV4, YOLOV4Scaled, YOLOV5, YOLOV6, YOLOV7, YOLOX, YOLOR, PPYOLOE).
Model
Object detection
- MMDet
- YOLOv3
- YOLOV4
- YOLOV4Scaled
- YOLOV5
- YOLOV6
- YOLOV7
- YOLOX
- YOLOR
- PPYOLOE
ReID
- deepsort-reid
- fast-reid
Project structure
Expand
yolovx_deepsort_pytorch/
├── 001.avi
├── checkpoint
├── configs
│ ├── deep_sort.yaml
│ ├── fastreid.yaml
│ ├── mmdet.yaml
│ ├── ppyoloe.yaml
│ ├── yolor.yaml
│ ├── yolov3_tiny.yaml
│ ├── yolov3.yaml
│ ├── yolov4Scaled.yaml
│ ├── yolov4.yaml
│ ├── yolov5.yaml
│ ├── yolov6.yaml
│ ├── yolov7.yaml
│ └── yolox.yaml
├── deep_sort
│ ├── deep
│ ├── deep_sort.py
│ ├── __init__.py
│ ├── __pycache__
│ ├── README.md
│ └── sort
├── deepsort.py
├── demo
│ ├── 1.jpg
│ ├── 2.jpg
│ └── demo.gif
├── detector
│ ├── __init__.py
│ ├── MMDet
│ ├── PPYOLOE
│ ├── __pycache__
│ ├── YOLOR
│ ├── YOLOv3
│ ├── YOLOV4
│ ├── YOLOV4Scaled
│ ├── YOLOV5
│ ├── YOLOV6
│ ├── YOLOV7
│ └── YOLOX
├── LICENSE
├── models
│ ├── deep_sort_pytorch
│ ├── ppyoloe
│ ├── readme.md
│ ├── yolor
│ ├── yolov3
│ ├── yolov4
│ ├── yolov4-608
│ ├── yolov4Scaled
│ ├── yolov5
│ ├── yolov6
│ ├── yolov7
│ └── yolox
├── output
│ ├── ppyoloe
│ ├── README.MD
│ ├── yolor
│ ├── yolov3
│ ├── yolov4
│ ├── yolov4Scaled
│ ├── yolov5
│ ├── yolov6
│ ├── yolov7
│ └── yolox
├── ped_det_server.py
├── README.md
├── requirements.txt
├── results_analysis
│ └── analysis.py
├── scripts
│ ├── yoloe.sh
│ ├── yolor.sh
│ ├── yolov3_deepsort.sh
│ ├── yolov3_tiny_deepsort.sh
│ ├── yolov4_deepsort.sh
│ ├── yolov4Scaled_deepsort.sh
│ ├── yolov5_deepsort.sh
│ ├── yolov6_deepsort.sh
│ ├── yolov7_deepsort.sh
│ └── yolox_deepsort.sh
├── thirdparty
│ ├── fast-reid
│ └── mmdetection
├── train.jpg
├── tutotial
│ ├── Hungarian_Algorithm.ipynb
│ ├── kalman_filter.ipynb
│ └── kalman_filter.py
├── utils
│ ├── asserts.py
│ ├── draw.py
│ ├── evaluation.py
│ ├── __init__.py
│ ├── io.py
│ ├── json_logger.py
│ ├── log.py
│ ├── parser.py
│ ├── __pycache__
│ └── tools.py
├── webserver
│ ├── config
│ ├── images
│ ├── __init__.py
│ ├── readme.md
│ ├── rtsp_threaded_tracker.py
│ ├── rtsp_webserver.py
│ ├── server_cfg.py
│ └── templates
└── yolov3_deepsort_eval.py
Dependencies
Expand
See this requirements.txt
for more detail.
- python 3 (python2 not sure)
- numpy
- scipy
- opencv-python
- sklearn
- torch >= 0.4
- torchvision >= 0.1
- pillow
- vizer
- edict
Quick Start
Expand
- Check all dependencies installed
pip install -r requirements.txt
for user in china, you can specify pypi source to accelerate install like:
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
- Clone this repository
git clone https://github.com/xuarehere/yolovx_deepsort_pytorch.git
- Download YOLOv3 parameters
cd detector/YOLOv3/weight/
wget https://pjreddie.com/media/files/yolov3.weights
wget https://pjreddie.com/media/files/yolov3-tiny.weights
cd ../../../
- Download deepsort parameters ckpt.t7
cd deep_sort/deep/checkpoint
# download ckpt.t7 from
https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder
cd ../../../
- Compile nms module
cd detector/YOLOv3/nms
sh build.sh
cd ../../..
Notice:
If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either gcc version too low
or libraries missing
.
- (Optional) Prepare third party submodules
This library supports bagtricks, AGW and other mainstream ReID methods through providing an fast-reid adapter.
to prepare our bundled fast-reid, then follow instructions in its README to install it.
Please refer to configs/fastreid.yaml
for a sample of using fast-reid. See Model Zoo for available methods and trained models.
This library supports Faster R-CNN and other mainstream detection methods through providing an MMDetection adapter.
to prepare our bundled MMDetection, then follow instructions in its README to install it.
Please refer to configs/mmdet.yaml
for a sample of using MMDetection. See Model Zoo for available methods and trained models.
Run
git submodule update --init --recursive
- Run demo
usage: deepsort.py [-h]
[--fastreid]
[--config_fastreid CONFIG_FASTREID]
[--mmdet]
[--config_mmdetection CONFIG_MMDETECTION]
[--config_detection CONFIG_DETECTION]
[--config_deepsort CONFIG_DEEPSORT] [--display]
[--frame_interval FRAME_INTERVAL]
[--display_width DISPLAY_WIDTH]
[--display_height DISPLAY_HEIGHT] [--save_path SAVE_PATH]
[--cpu] [--camera CAM]
VIDEO_PATH
# yolov3 + deepsort
python deepsort.py [VIDEO_PATH]
# yolov3_tiny + deepsort
python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml
# yolov3 + deepsort on webcam
python3 deepsort.py /dev/video0 --camera 0
# yolov3_tiny + deepsort on webcam
python3 deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0
# fast-reid + deepsort
python deepsort.py [VIDEO_PATH] --fastreid [--config_fastreid ./configs/fastreid.yaml]
# MMDetection + deepsort
python deepsort.py [VIDEO_PATH] --mmdet [--config_mmdetection ./configs/mmdet.yaml]
# yolov4 + deepsort on video
python3 deepsort.py ./001.avi --save_path ./output/yolov4/001 --config_detection ./configs/yolov4.yaml --detect_model yolov4
# yolov4Scaled + deepsort on video
python3 deepsort.py ./001.avi --save_path ./output/yolov4Scaled/001 --config_detection ./configs/yolov4Scaled.yaml --detect_model yolov4Scaled
# yolov5 + deepsort on video
python3 deepsort.py ./001.avi --save_path ./output/yolov5/001 --config_detection ./configs/yolov5.yaml --detect_model yolov5
# yolov6 + deepsort on video
python3 deepsort.py ./001.avi --save_path ./output/yolov6/001 --config_detection ./configs/yolov6.yaml --detect_model yolov6
# yolov7 + deepsort on video
python3 deepsort.py ./001.avi --save_path ./output/yolov7/001 --config_detection ./configs/yolov7.yaml --detect_model yolov7
# yolox + deepsort on video
python deepsort.py ./001.avi --save_path ./output/yolox/001 --config_detection ./configs/yolox.yaml --detect_model yolox
Use --display
to enable display.
Results will be saved to ./output/results.avi
and ./output/results.txt
.
All files above can also be accessed from BaiduDisk!
linker:BaiduDisk
passwd:fbuw
Training the Object model
Training the RE-ID model
Expand
The original model used in paper is in original_model.py, and its parameter here original_ckpt.t7.
To train the model, first you need download Market1501 dataset or Mars dataset.
Then you can try train.py to train your own parameter and evaluate it using test.py and evaluate.py.
Train
$ cd ./deep_sort/deep/train.py
$ python train.py --data-dir /workspace/dataset/Market-1501/Market-1501-v15.09.15/pytorch/ --interval 10 --gpu-id 0