The PyTorch implementation of the paper MetaViewer: Towards A Unified Multi-View Representation, CVPR 2023.
- python 3.8
- troch 1.13.1
- higher 0.2.1
- timm 0.6.12
Please download the dataset & checkpoints(optional) and replace the corresponding folders before training/testing.
Train:
python main.py --model MetaViewer --channels -1 500 500 2000 256 --meta_channels -1 32
Test:
python main.py --model MetaViewer --channels -1 500 500 2000 256 --meta_channels -1 32 --testing
@inproceedings{DBLP:conf/cvpr/0011SMXY23,
author = {Ren Wang and
Haoliang Sun and
Yuling Ma and
Xiaoming Xi and
Yilong Yin},
title = {MetaViewer: Towards {A} Unified Multi-View Representation},
booktitle = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition,
{CVPR} 2023, Vancouver, BC, Canada, June 17-24, 2023},
pages = {11590--11599},
publisher = {{IEEE}},
year = {2023},
url = {https://doi.org/10.1109/CVPR52729.2023.01115},
doi = {10.1109/CVPR52729.2023.01115},
timestamp = {Tue, 29 Aug 2023 15:44:40 +0200},
biburl = {https://dblp.org/rec/conf/cvpr/0011SMXY23.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Work&Code is inspired by AE2-Nets, MFLVC, CPM_Nets, GBML ...
If you have any questions, feel free to contact Ren Wang (xxlifelover@gmail.com).