This repository contains our algorithm for the MICCAI 2023 Dentex challange.
-
Method paper: Intergrated Segmentation and Detection Models for Dentex Challenge 2023 (arxiv.org)
-
Dataset structure Datasets are organized as:
dentex_dataset ├── coco │ ├── disease │ │ ├── annotations │ │ ├── train2017 │ │ └── val2017 │ ├── disease_all │ │ ├── annotations │ │ ├── train2017 │ │ └── val2017 │ ├── enumeration32 │ │ ├── annotations │ │ ├── train2017 │ │ └── val2017 │ └── quadrant │ ├── annotations │ ├── train2017 │ └── val2017 ├── origin │ ├── quadrant │ ├── quadrant_enumeration │ ├── quadrant_enumeration_disease │ └── unlabelled ├── segmentation │ ├── enumeration32 │ │ ├── masks │ │ └── xrays │ └── enumeration9 │ ├── masks │ └── xrays └── yolo ├── disease │ ├── images │ │ ├── train2017 │ │ └── val2017 │ └── labels │ ├── train2017 │ └── val2017 └── disease_all ├── images │ ├── train2017 │ └── val2017 └── labels ├── train2017 └── val2017
-
Process:
-
prepare detection dataset
Run each
process...
function inprocess_dataset.py
to convert the dataset to expected format (coco or yolo). The processes are intended to be executed sequentially. -
train detection models
Download pretrained weights from each offical repos(swin-transformer, dino, yolo, etc.) and refer to those offical repos and
command_snippets.sh
to train detection models. -
prepare segmentaion dataset
32-class segmentaion dataset can be generated from the origin dataset. 9-class segmentation dataset depends on the prediction result by a quadrant detection model. See
results/enumeration_dataset_quadrant_predictions.json
for example. -
train segmentaion models
Refer to the
command_snippets.sh
-
run prediction
Choose best checkpoints for each model, rename them or modify the paths in the
predict.py
, and runpredict.py
.results/abnormal-teeth-detection.json
is an example output.
-