/FastIPC

incremental potential contact with taichi

Primary LanguageC++

Build with raw Cholmod

  1. Install SuiteSparse
sudo apt-get install libsuitesparse-dev
  1. Configure FastIPC
## Add the following line into ~/.bashrc
export PYTHONPATH=/path/to/FastIPC:$PYTHONPATH

pip3 install taichi taichi_three taichi_glsl meshio scipy scikit-sparse
cd common/math/wrapper
g++ wrapper.cpp EVCTCD/CTCD.cpp -o a.so -fPIC -O2 -shared -std=c++1z -mavx2 -mfma -I .

Build with MKL-Enhanced Cholmod (Not Necessary)

  1. Install MKL (Intel Math Kernel Library, free tools for students)

  2. Build SuiteSparse from source (with MKL linking flags)

sudo apt install libomp-dev libmpc-dev

## Add the following lines into ~/.zshrc
export PATH=/snap/clion/current/bin/cmake/linux/bin:$PATH
export LIBRARY_PATH=/opt/intel/oneapi/mkl/2021.1.1/lib/intel64:$LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/2021.1.1/lib/intel64:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/2021.1.1/linux/compiler/lib/intel64_lin:$LD_LIBRARY_PATH
export LD_PRELOAD=/opt/intel/oneapi/mkl/2021.1.1/lib/intel64/libmkl_def.so.1:/opt/intel/oneapi/mkl/2021.1.1/lib/intel64/libmkl_avx2.so.1:/opt/intel/oneapi/mkl/2021.1.1/lib/intel64/libmkl_core.so:/opt/intel/oneapi/mkl/2021.1.1/lib/intel64/libmkl_intel_lp64.so:/opt/intel/oneapi/mkl/2021.1.1/lib/intel64/libmkl_intel_thread.so:/opt/intel/oneapi/compiler/2021.1.1/linux/compiler/lib/intel64_lin/libiomp5.so

git clone https://github.com/DrTimothyAldenDavis/SuiteSparse.git
cd SuiteSparse
vim SuiteSparse_config/SuiteSparse_config.mk

## Modify CUDA_PATH like: CUDA_PATH = /usr/local/cuda-10.1
## Update CUDA architecture (e.g. remove -gencode=arch=compute_30,code=sm_30 \)

make library BLAS='-lmkl_intel_lp64 -lmkl_core -lmkl_intel_thread -lpthread -lm -lmkl_blacs_intelmpi_lp64 -liomp5' LAPACK='-lmkl_scalapack_lp64' -j 12
sudo cp -r lib /usr/local
sudo cp -r include /usr/local
  1. Same as step 2 in the previous section

Taichi Programming/Debugging Tips

  1. Be cautious with type

    ti.Matrix([[0, 0], [0, 0]]) and ti.Matrix([[0.0, 0.0], [0.0, 0.0]]) have two different types.

  2. Profiling your code

    There is a timer implemented in timer.py. The usage is like:

     with Timer("Process 1"):
         ### code snippet 1
         ...
     with Timer("Process 2"):
         ### code snippet 2
         ...
     Timer_Print()
    

    It will always output average timing for each component. It will compute the compile time automatically which is calculated with the first round running time.

  3. Restart functionality

    Restart is easy to implement with pickle so it is not implemented as a separate file:

     # load data
     [x_, v_, boundary] = pickle.load(open(directory + f'caches/{f_start:06d}.p', 'rb'))
     x.from_numpy(x_)
     v.from_numpy(v_)
    
     # save data
     pickle.dump([x.to_numpy(), v.to_numpy(), boundary], open(directory + f'caches/{f + 1:06d}.p', 'wb'))
    
  4. Use ti.template()

    1. The following four will be recognized as four different types if passed in for ti.template(). Only first two of them can be used to access matrix indices.

      1. [1, 2, 3]
      2. ti.Vector([1, 2, 3])
      3. variable a (assigned by [1, 2, 3])
      4. variable a (assigned by ti.Vector([1, 2, 3]))

      A good example is in math_tools.py:

      @ti.func
      def extract_vec(v, idx: ti.template()):
          vec = ti.Matrix.zero(ti.get_runtime().default_fp, len(idx))
          for i, j in ti.static(enumerate(idx)):
              vec[i] = v[j]
          return vec
      
    2. ti.template() can be used in @ti.kernel to call with different fields. Official documentation only mentions @ti.kernel can only hold 8 scalar parameters. These are done in compile time. ti.static() is just like if-constexpr in C++ which will optimize running time a lot.

    3. A.n and A.m can retrieve the dimensions of matrix. ti.get_runtime().default_fp can be used to get current precision.

  5. Code in taichi repo has more complete API to search for than documentation.

Matrix Derivative Ordering Convention

Column ordering convention for

e.g. in 2d