/YOLOv6_pro

Make it easier for yolov6 to change the network structure

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

YOLOv6 pro

PS: MAF-YOLO | 我们开发的MAF-YOLO(PRCV 2024 Oral)已开源

初衷让 YOLOv6 更换网络结构更为便捷

基于官方 YOLOv6 的整体架构,使用 YOLOv5 的网络构建方式构建一个 YOLOv6 网络,包括 backboneneckeffidehead 结构

可以在 yaml 文件中任意修改或添加模块,并且每个修改的文件都是独立可运行的,目的是为了助力科研

后续会基于 yolov5yoloair 中的模块加入更多的网络结构改进,有问题或者是改进意见都可以随时在 issues 中提出呀

预训练权重已经从官方权重转换,确保可以匹配

我们使用的 yoloairYOLOv6 pro 框架在 IEEE UV 2022 "Vision Meets Alage" 目标检测竞赛中取得第一名!

博客介绍地址:
YOLOv6 Pro | 使 YOLOv6 构建网络和更换模块更为便捷,助力科研中的网络结构改进,包括Backbone,Neck,DecoupleHead(参考YOLOv5搭建网络的方式)

已经支持的模型:

基础模型
  • YOLOV6l
  • YOLOV6m
  • YOLOV6s
  • YOLOV6t
  • YOLOV6n
  • 大尺寸模型,四个输出层
  • YOLOV6l_p2
  • YOLOV6l6
  • YOLOV6n6
  • YOLOv6 Pro 结构:

  • 增加 DAMO YOLO 中的 neck:RepGFPN M,S,T
  • 增加 RepGhost 模块和 RepGhostNet1.0× backbone
  • 增加 FocalTransformer, FocalTRC3模块
  • 增加 CoAtNet 主干, MBConv, CoAtTran 模块
  • 增加 SimOTA标签分配策略

  • 版本更新说明
  • [ 2022/12/4 ] v1.0.0 版本,对齐完善了几个基础模型的大小和精度,构建 YOLOv6l6,YOLOv6n6,增加 wandb 记录模型训练曲线
  • [ 2022/12/8 ]增加 GiraffeNeckV2,RepGhost,增加 VOC 数据集上的 YOLOv6 Pro 基准实验结果
  • [ 2022/12/10 ]增加 DAMO YOLO 中的 neck RepGFPN M,S,T
  • [ 2022/12/12 ]增加 FocalTransformer 中的模块,并组合为 FocalC3 模块
  • [ 2022/12/14 ]增加 RepGhost,CoAtNet 模块,其中 coatNet 包括两个 MBConv 层和两个 CoAtTran 层,组成卷积+ transformer 的主干网络结构
  • [ 2022/12/16 ]增加YOLOv6 第一个版本使用的 SimOTA 标签分配策略
  • Benchmark

    Model Size mAPval
    0.5:0.95
    SpeedT4
    trt fp16 b1
    (fps)
    SpeedT4
    trt fp16 b32
    (fps)
    Params
    (M)
    FLOPs
    (G)
    YOLOv6-N 640 35.9300e
    36.3400e
    802 1234 4.3 11.1
    YOLOv6-T 640 40.3300e
    41.1400e
    449 659 9.7 24.9
    YOLOv6-S 640 43.5300e
    43.8400e
    358 495 17.2 44.2
    YOLOv6-M 640 49.5 179 233 34.3 82.2
    YOLOv6-L-ReLU 640 51.7 113 149 58.5 144.0
    YOLOv6-L 640 52.5 98 121 58.5 144.0
    • Speed is tested with TensorRT 7.2 on T4.
    • Data from YOLOv6 official
    • 目前 yolov6l,yolov6s,yolov6t,yolov6n 模型大小与精度已经和官方对齐

    YOLOv6 基准实验

    数据集: VOC2007,VOC2012
    训练集: train_2007, tran_2012, val_2007, test_2007 (16551 images)
    验证集: test_2007 (4952 images)
    GPU: 4090 24GB
    使用 COCO 预训练权重:

    Model img size MAP0.5 MAP0.5:0.95 预训练模型 epochs
    YOLOv6L 640 0.928 0.761 COCO 50
    YOLOv6M 640 0.911 0.735 COCO 50
    YOLOv6S 640 0.902 0.705 COCO 50
    YOLOv6T 640 0.877 0.677 COCO 50
    YOLOv6N 640 0.844 0.633 COCO 50
    无预训练权重
    Model img size MAP0.5 MAP0.5:0.95 预训练模型 epochs
    YOLOv6N 640 0.763 0.537 None 100
    YOLOv6T 640 0.787 0.560 None 100
    YOLOv6S 640 0.795 0.567 None 100
    YOLOv6M 640 0.836 0.629 None 100
    YOLOv6L 640 0.862 0.664 None 100
    YOLOv6N6 640 0.799 0.567 not all 100
    YOLOv6L6 640 0.911 0.741 not all 100
    YOLOv6L6 640 0.866 0.674 None 100

    YOLOv6 Pro 改进模块的基准实验

    Model img size MAP0.5 MAP0.5:0.95 预训练模型 epochs Params(M) GFLOPs 数据集
    YOLOv6T 640 0.787 0.560 None 100 9.68 24.84 VOC
    YOLOv6S 640 0.795 0.567 None 100 17.19 44.09 VOC
    YOLOv6M 640 0.836 0.629 None 100 34.3 82.2 VOC
    YOLOv6T+FocalC3 640 0.780 0.544 None 100 9.47 24.53 VOC
    • Params and GFLOPs are calculated in the validation phase,the calculation method uses the official YOLOv6 script
    • Only 100 epochs of training, does not represent the final performance

    训练你的数据集

    数据集配置

    data/images/train 中放入你的训练集图片
    data/images/val 中放入你的验证集图片
    data/labels/train 中放入你的训练集标签(标签格式为yolo格式)
    data/labels/val 中放入你的验证集标签 
    

    数据集文件结构

    ├── data
    │   ├── images
    │   │   ├── train
    │   │   └── val
    │   ├── labels
    │   │   ├── train
    │   │   ├── val
    

    data.yaml 配置

    train: data/images/train # 训练集路径
    val: data/images/val # 验证集路径
    is_coco: False
    nc: 3  # 设置为你的类别数量
    names: ["car","person","bike"] #类别名称

    网络结构文件配置

    以yolov6l.yaml为例

    depth_multiple: 1.0  # model depth multiple
    width_multiple: 1.0  # layer channel multiple
    backbone:
      # [from, number, module, args]
      [[-1, 1, ConvWrapper, [64, 3, 2]],  # 0-P1/2
       [-1, 1, ConvWrapper, [128, 3, 2]],  # 1-P2/4
       [-1, 1, BepC3, [128, 6, "ConvWrapper"]],
       [-1, 1, ConvWrapper, [256, 3, 2]],  # 3-P3/8
       [-1, 1, BepC3, [256, 12, "ConvWrapper"]],
       [-1, 1, ConvWrapper, [512, 3, 2]],  # 5-P4/16
       [-1, 1, BepC3, [512, 18, "ConvWrapper"]],
       [-1, 1, ConvWrapper, [1024, 3, 2]],  # 7-P5/32
       [-1, 1, BepC3, [1024, 6, "ConvWrapper"]],
       [-1, 1, SPPF, [1024, 5]]]  # 9
    neck:
       [[-1, 1, SimConv, [256, 1, 1]],
       [-1, 1, Transpose, [256]],
       [[-1, 6], 1, Concat, [1]],  #768
       [-1, 1, BepC3, [256, 12, "ConvWrapper"]],
    
       [-1, 1, SimConv, [128, 1, 1]],
       [-1, 1, Transpose, [128]],
       [[-1, 4], 1, Concat, [1]],  #384
       [-1, 1, BepC3, [128, 12, "ConvWrapper"]],   #17 (P3/8-small)
    
       [-1, 1, SimConv, [128, 3, 2]],
       [[-1, 14], 1, Concat, [1]],  
       [-1, 1, BepC3, [256, 12, "ConvWrapper"]],  # 20 (P4/16-medium)
    
       [-1, 1, SimConv, [256, 3, 2]],
       [[-1, 10], 1, Concat, [1]], 
       [-1, 1, BepC3, [512, 12, "ConvWrapper"]]]  # 23 (P5/32-large)
    effidehead:
      [[17, 1, Head_layers, [128, 16]], 
      [20, 1, Head_layers, [256, 16]], 
      [23, 1, Head_layers, [512, 16]],
      [[24, 25, 26], 1, Out, []]]
    

    预训练权重(官方权重转化而来)

    基本模型
    YOLOv6-L.pt
    YOLOv6-M.pt
    YOLOv6-S.pt
    YOLOv6-T.pt
    YOLOv6-N.pt
    大尺寸模型
    YOLOv6-L6-p2.pt
    YOLOv6-L6.pt
    YOLOv6-N6.pt
    tips:其中大尺寸模型无 coco 预训练权重,而是从小模型的对应层转化而来

    训练命令

    使用预训练权重:

    YOLOv6t

    python tools/train.py --conf-file configs/model_yaml/yolov6t_yaml.py --data data/data.yaml --device 0 --img 640

    YOLOv6s

    python tools/train.py --conf-file configs/model_yaml/yolov6s_yaml.py --data data/data.yaml --device 0 --img 640

    YOLOv6m

    python tools/train.py --conf-file configs/model_yaml/yolov6m_yaml.py --data data/data.yaml --device 0 --img 640

    YOLOv6l

    python tools/train.py --conf-file configs/model_yaml/yolov6l_yaml.py --data data/data.yaml --device 0 --img 640

    不使用预训练权重:

    Tips: 如果不使用预训练权重,建议用更大的学习率,可以更快得到结果,否则会很难训练,两者配置文件的区别可以从 configs/model_yaml 和 configs/without_weights中看到

    只需要将 --conf-file configs/without_weights/yolov6l_yaml.py 中的 model_yaml 改为 without_weights 即可,调用无预训练权重的配置文件,如训练 YOLOv6l 不使用预训练:

    python tools/train.py --conf-file configs/without_weights/yolov6l_yaml.py --data data/data.yaml --device 0 --img 640

    如何增加自己的模块

    与 yolov5 的方式类似

    step1: 先在yolov6/layers/common.py 中加入模块的代码
    step2: 在yolov6/models/yolo.py 的 parse_model 函数中加入对应模块的条件判断语句
    step3: 在configs/yaml/目录下新建你的 yaml 文件,并将模块加入
    step4: 在configs/model_yaml/ 目录下新建一个 py 文件,并将yaml_file目录改为 yaml 文件的路径
    step5: 运行训练命令

    Acknowledgements

    Cite

    @article{li2022yolov6,
      title={YOLOv6: A single-stage object detection framework for industrial applications},
      author={Li, Chuyi and Li, Lulu and Jiang, Hongliang and Weng, Kaiheng and Geng, Yifei and Li, Liang and Ke, Zaidan and Li, Qingyuan and Cheng, Meng and Nie, Weiqiang and others},
      journal={arXiv preprint arXiv:2209.02976},
      year={2022}
    }