NUCS is a Python library for solving Constraint Satisfaction and Optimization Problems. Because it is 100% written in Python, NUCS is easy to install and use. NUCS is also very fast because it is powered by Numpy and Numba.
pip install nucs
Check out NUCS documentation.
Find all 14200 solutions to the 12-queens problem
NUMBA_CACHE_DIR=.numba/cache PYTHON_PATH=. python -m nucs.examples.queens -n 12
{
'OPTIMIZER_SOLUTION_NB': 0,
'PROBLEM_FILTER_NB': 262011,
'PROBLEM_PROPAGATOR_NB': 3,
'PROBLEM_VARIABLE_NB': 36,
'PROPAGATOR_ENTAILMENT_NB': 0,
'PROPAGATOR_FILTER_NB': 2269980,
'PROPAGATOR_FILTER_NO_CHANGE_NB': 990450,
'PROPAGATOR_INCONSISTENCY_NB': 116806,
'SOLVER_BACKTRACK_NB': 131005,
'SOLVER_CHOICE_NB': 131005,
'SOLVER_CHOICE_DEPTH': 10,
'SOLVER_SOLUTION_NB': 14200
}
Compute the 92 solutions to the BIBD(8,14,7,4,3) problem
NUMBA_CACHE_DIR=.numba/cache PYTHON_PATH=. python -m nucs.examples.bibd
{
'OPTIMIZER_SOLUTION_NB': 0,
'PROBLEM_FILTER_NB': 2797,
'PROBLEM_PROPAGATOR_NB': 462,
'PROBLEM_VARIABLE_NB': 504,
'PROPAGATOR_ENTAILMENT_NB': 5273,
'PROPAGATOR_FILTER_NB': 562130,
'PROPAGATOR_FILTER_NO_CHANGE_NB': 531724,
'PROPAGATOR_INCONSISTENCY_NB': 1307,
'SOLVER_BACKTRACK_NB': 1398,
'SOLVER_CHOICE_NB': 1398,
'SOLVER_CHOICE_DEPTH': 41,
'SOLVER_SOLUTION_NB': 92
}
Demonstrate that the optimal 10-marks Golomb ruler length is 55
NUMBA_CACHE_DIR=.numba/cache PYTHON_PATH=. python -m nucs.examples.golomb -n 10
{
'OPTIMIZER_SOLUTION_NB': 10,
'PROBLEM_FILTER_NB': 22886,
'PROBLEM_PROPAGATOR_NB': 82,
'PROBLEM_VARIABLE_NB': 45,
'PROPAGATOR_ENTAILMENT_NB': 98080,
'PROPAGATOR_FILTER_NB': 2843257,
'PROPAGATOR_FILTER_NO_CHANGE_NB': 1806240,
'PROPAGATOR_INCONSISTENCY_NB': 11406,
'SOLVER_BACKTRACK_NB': 11405,
'SOLVER_CHOICE_NB': 11470,
'SOLVER_CHOICE_DEPTH': 9,
'SOLVER_SOLUTION_NB': 10
}
[1, 6, 10, 23, 26, 34, 41, 53, 55]