************************** DeepFLASH ************************** This repository contains source code and data of a predictive diffeomorphic image registration (https://arxiv.org/abs/2004.02097). ************************** Disclaimer ************************** This software is published for academic and non-commercial use only. The implementation includes network training, testing for 2D and 3D medical image registration. We request you to cite our research paper if you use it: DeepFLASH: An Efficient Network for Learning-based Medical Image Registration. Jian Wang, Miaomiao Zhang. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. ``` @inproceedings{wang2020deepflash, title={DeepFLASH: An Efficient Network for Learning-based Medical Image Registration}, author={Wang, Jian and Zhang, Miaomiao}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={4444--4452}, year={2020} } ``` ************************** Setup ************************** * [PyTorch 3.4](http://pytorch.org/) * [PyCA](https://bitbucket.org/scicompanat/pyca) * [FLASH] (https://bitbucket.org/FlashC/flashc/src/master/) * [CUDA 9.0](https://developer.nvidia.com/cuda-downloads) * [Anaconda 4.3.1](https://anaconda.org) ************************** Usage ************************** Below is a *QuickStart* guide on how to use DeepFLASH for network training and testing. ========================= Training ======================== Required Input Data: pairwise images and associated initial velocity field. Please note that the optimal registration solutions (bandlimited initial velocity fields) of our network training is generated by FLASH algorithm [1] (https://bitbucket.org/FlashC/flashc). You may also run other registration algorithm to estimate the initial velocity fields and use our provided MATLAB preprocess scripts (/DeepFLASH/preprocess/processmhd.m, please follow the instruction in /DeepFLASH/preprocess/Preprocessing_instruction.txt) to extract the frequencies. Steps: cd DeepFLASH/ sh runDeepFLASH_training.sh python3 DeepFLASH_train.py -h --network_type specify network type --im_src_realpart IM_SRC_REALPART root directory of real parts of source images --im_tar_realpart IM_TAR_REALPART root directory of real parts of target images --im_vel_realX IM_VEL_REALX root directory of real parts of velocity fields (X direction) --im_vel_realY IM_VEL_REALY root directory of real parts of velocity fields (Y direction) --im_vel_realZ IM_VEL_REALZ root directory of real parts of velocity fields (Z direction) --im_src_imaginarypart IM_SRC_IMAGINARYPART root directory of imaginary parts of source images --im_tar_imaginarypart IM_TAR_IMAGINARYPART root directory of imaginary parts of target images --im_vel_imagX IM_VEL_IMAGX root directory of imaginary parts of velocity fields (X direction) --im_vel_imagY IM_VEL_IMAGY root directory of imaginary parts of velocity fields (Y direction) --im_vel_imagZ IM_VEL_IMAGZ root directory of imaginary parts of velocity fields (Z direction) ========================= Testing ======================== sh runDeepFLASH_testing.sh python3 DeepFLASH_test.py -h --network_type specify network type --saved_model root directory of the saved model --im_src_realpart IM_SRC_REALPART root directory of real parts of source images --im_tar_realpart IM_TAR_REALPART root directory of real parts of target images --im_src_imaginarypart IM_SRC_IMAGINARYPART root directory of imaginary parts of source images --im_tar_imaginarypart IM_TAR_IMAGINARYPART root directory of imaginary parts of target images ************************** Reference ************************** [1]. Zhang et. al, Fast diffeomorphic image registration via Fourier-approximated Lie algebras, 2019 IJCV.