/protein-sequence-embedding-iclr2019

Source code for "Learning protein sequence embeddings using information from structure" - ICLR 2019

Primary LanguagePythonOtherNOASSERTION

Learning protein sequence embeddings using information from structure

This repository contains the source code and links to the data and pretrained embedding models accompanying the ICLR 2019 paper: Learning protein sequence embeddings using information from structure

@inproceedings{
bepler2018learning,
title={Learning protein sequence embeddings using information from structure},
author={Tristan Bepler and Bonnie Berger},
booktitle={International Conference on Learning Representations},
year={2019},
}

Setup and dependencies

Dependencies:

  • python 3
  • pytorch >= 0.4
  • numpy
  • scipy
  • pandas
  • sklearn
  • cython
  • h5py (for embedding script)

Run setup.py to compile the cython files:

python setup.py build_ext --inplace

Data sets

The data sets with train/dev/test splits are provided as .tar.gz files from the links below.

The training and evaluation scripts assume that these data sets have been extracted into a directory called 'data'.

Pretrained models

Our trained versions of the structure-based embedding models and the bidirectional language model can be downloaded here.

Author

Tristan Bepler (tbepler@mit.edu)

Cite

Please cite the above paper if you use this code or pretrained models in your work.

License

The source code and trained models are provided free for non-commercial use under the terms of the CC BY-NC 4.0 license. See LICENSE file and/or https://creativecommons.org/licenses/by-nc/4.0/legalcode for more information.

Contact

If you have any questions, comments, or would like to report a bug, please file a Github issue or contact me at tbepler@mit.edu.