/Age-Gender-MXNET

MXNET实现的年龄性别识别,训练了超大数据集得到的模型。

Primary LanguagePythonMIT LicenseMIT

年龄性别识别

年龄性别识别,基于insightface功能模块开发的,支持多张人脸同时检测和识别。

环境

  • 安装mxnet,支持1.3~1.6版本,安装命令如下。
pip install mxnet-cu101==1.5.0

数据集

  • 默认支持以下三种数据集,将以下三个数据集下载解压到dataset目录下。
  1. http://afad-dataset.github.io/
  2. http://mmlab.ie.cuhk.edu.hk/projects/MegaAge/
  3. https://ibug.doc.ic.ac.uk/resources/agedb/
  • 执行生成数据列表。
python create_dataset.py
  • 如果想训练自定义数据集,只需生成类似以下的数据列表就可以了。
dataset/AgeDB/0_MariaCallas_35_f.jpg,0,35
dataset/AgeDB/10000_GlennClose_62_f.jpg,0,62
dataset/AgeDB/10001_GoldieHawn_23_f.jpg,0,23
dataset/AgeDB/10003_GoldieHawn_24_f.jpg,0,24
dataset/AgeDB/10004_GoldieHawn_27_f.jpg,0,27
dataset/AgeDB/10005_GoldieHawn_28_f.jpg,0,28
dataset/AgeDB/10006_GoldieHawn_29_f.jpg,0,29

如果想看各个年龄的分布,可以执行show_age_distribution.py生成年龄分布图。

年龄分布

训练

开始训练,具体参数可以查看代码,这里介绍一下network参数,这个参数是选择模型的,当指定为r50则选择ResNet作为特征提取模型,当m50则使用MobileNet作为特征提取模型。

python train.py

训练输出的结果:

gpu num: 1
num_layers 50
data_shape [3, 112, 112]
Called with argument: Namespace(batch_size=128, color=0, ctx_num=1, cutoff=0, data_dir='dataset', data_shape='3,112,112', end_epoch=200, gpu_ids='0', image_channel=3, image_h=112, image_w=112, lr=0.1, lr_steps='10,30,80,150,200', network='m50', num_layers=50, prefix='temp/model', pretrained='', rand_mirror=1, rescale_threshold=0, version_input=1, version_output='GAP')
1 GAP 32
INFO:root:loading recordio dataset\train.rec...
INFO:root:dataset\train.rec 数据大小:303018
INFO:root:是否随机翻转图片:1
INFO:root:loading recordio dataset\val.rec...
INFO:root:dataset\val.rec 数据大小:1032
INFO:root:是否随机翻转图片:False
call reset()
开始训练...
INFO:root:Epoch[0] Batch [0-20]	Speed: 520.85 samples/sec	acc=0.572545	MAE=10.734747	CUM_5=0.240699
INFO:root:Epoch[0] Batch [20-40]	Speed: 518.95 samples/sec	acc=0.589844	MAE=9.351172	CUM_5=0.289844
INFO:root:Epoch[0] Batch [40-60]	Speed: 516.86 samples/sec	acc=0.603125	MAE=9.184766	CUM_5=0.303906
INFO:root:Epoch[0] Batch [60-80]	Speed: 508.44 samples/sec	acc=0.609766	MAE=8.759375	CUM_5=0.336719
INFO:root:Epoch[0] Batch [80-100]	Speed: 461.26 samples/sec	acc=0.656250	MAE=8.224609	CUM_5=0.361328
INFO:root:Epoch[0] Batch [100-120]	Speed: 518.43 samples/sec	acc=0.696875	MAE=7.611328	CUM_5=0.400391
INFO:root:Epoch[0] Batch [120-140]	Speed: 514.88 samples/sec	acc=0.715234	MAE=7.224609	CUM_5=0.426172
INFO:root:Epoch[0] Batch [140-160]	Speed: 517.80 samples/sec	acc=0.722266	MAE=6.976172	CUM_5=0.437500

评估

训练结束之后,执行下面的命令评估模型的识别准确率。

python eval.py

输出结果,从结果来看,准确率还是可以的。

100%|██████████| 1032/1032 [00:06<00:00, 153.75it/s]
性别准确率:0.972868
年龄准确率:0.761628

预测

使用训练好的模型或者笔者提供的模型执行年龄性别识别,通过指定图像文件路径完成识别。

python infer.py --image=test.jpg

识别输出结果:

第1张人脸,位置(160, 32, 204, 84), 性别:男, 年龄:30
第2张人脸,位置(545, 162, 579, 206), 性别:女, 年龄:31
第3张人脸,位置(632, 118, 666, 158), 性别:男, 年龄:28
第4张人脸,位置(91, 159, 151, 237), 性别:男, 年龄:38
第5张人脸,位置(723, 123, 760, 169), 性别:男, 年龄:26
第6张人脸,位置(263, 120, 317, 191), 性别:男, 年龄:27
第7张人脸,位置(438, 134, 481, 190), 性别:男, 年龄:46
第8张人脸,位置(908, 160, 963, 224), 性别:男, 年龄:35
第9张人脸,位置(39, 51, 81, 102), 性别:女, 年龄:31
第10张人脸,位置(807, 148, 847, 196), 性别:女, 年龄:26
第11张人脸,位置(449, 40, 485, 84), 性别:男, 年龄:29
第12张人脸,位置(378, 46, 412, 86), 性别:女, 年龄:33
第13张人脸,位置(534, 46, 567, 83), 性别:男, 年龄:30
第14张人脸,位置(272, 20, 311, 67), 性别:男, 年龄:28
第15张人脸,位置(358, 216, 375, 237), 性别:男, 年龄:27

效果图: 识别结果