Official implementation of "Fine-Grained Object Classification via Self-Supervised Pose Alignment". Accepted to CVPR2022.
CUB_200_2011 (CUB) - http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars (CAR) - https://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC-Aircraft (AIR) - https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Unzip benchmarks to "../Data/" (update the variable "data_config" in train.py if necessary).
We train the model with 4 V100. The valid batch size is 16*4=64.
python train.py
@article{p2pnet2022,
title={Fine-Grained Object Classification via Self-Supervised Pose Alignment},
author={Xuhui Yang, Yaowei Wang, Ke Chen, Yong Xu, Yonghong Tian},
journal={arXiv preprint arXiv:2203.15987},
year={2022},
}
This work is supported by the China Postdoctoral Science Foundation (2021M691682), the National Natural Science Foundation of China (61902131, 62072188, U20B2052), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07X183), and the Project of Peng Cheng Laboratory (PCL2021A07).