Note: in development, do not use in production.
OSMxtract is a simple Python package that uses the Overpass API to fetch OpenStreetMap features and export them in a GeoJSON file.
Using pip
:
pip install osmxtract
OSMxtract can guess the extent of your query based on three different options:
--fromfile
: use the bounds from the input vector or raster file ;--latlon
and--buffer
: use the bounds of a buffer around a given point ;--address
and--buffer
: use the bounds of a buffer around a geocoded address.
Usage: osmxtract [OPTIONS] OUTPUT
Extract GeoJSON features from OSM with the Overpass API.
Options:
--fromfile PATH Bounding box from input file.
--latlon FLOAT... Space-separated lat/lon coordinates.
--address TEXT Address to geocode.
--buffer INTEGER Buffer size in meters around lat/lon or
address.
--tag TEXT OSM tag of interest (ex: "highway").
--values TEXT Comma-separated list of possible values (ex:
"tertiary,primary").
--case-insensitive Make the first character of each value case
insensitive.
--geom [point|linestring|polygon|multipolygon]
Output geometry type.
--help Show this message and exit.
# buildings around the "Université Libre de Bruxelles" as polygons
# save features in the file `buildings.geojson`. since no values
# are provided, all non-null values are accepted for the tag
# "highway" are accepted.
osmxtract --address "Université Libre de Bruxelles" --buffer 5000 \
--tag building --geom polygon buildings.geojson
# primary, secondary and tertiary roads based on the extent
# of an existing raster. save the result as linestrings in the
# `major_roads.geojson` file. we use the `--case-insensitive`
# flag to get roads tagged as "primary" as well as "Primary".
osmxtract --fromfile map.tif --tag highway \
--values "primary,secondary,tertiary" \
--case-insensitive --geom linestring \
major_roads.geojson
# cafes and bars near "Atomium, Brussels"
osmxtract --address "atomium, brussels" --buffer 1000 \
--tag amenity --values "cafe,bar" --geom point \
cafes_and_bars.geojson
import json
from osmxtract import overpass, location
import geopandas as gpd
# Get bounding box coordinates from a 2km buffer
# around the Atomium in Brussels
lat, lon = location.geocode('Atomium, Brussels')
bounds = location.from_buffer(lat, lon, buffer_size=2000)
# Build an overpass QL query and get the JSON response
query = overpass.ql_query(bounds, tag='amenity', values=['cafe', 'bar'])
response = overpass.request(query)
# Process response manually...
for elem in response['elements']:
print(elem['tags'].get('name'))
# Output:
# Au Bon Coin
# Aux 4 Coins du Monde
# Excelsior
# Welcome II
# Heymbos
# Games Café
# Stadium
# Le Beau Rivage
# The Corner
# None
# Expo
# Koning
# Centrum
# St. Amands
# Bij Manu
# ...or parse them as GeoJSON
feature_collection = overpass.as_geojson(response, 'point')
# Write as GeoJSON
with open('cafes_and_bars.geojson', 'w') as f:
json.dump(feature_collection, f)
# To GeoPandas GeoDataFrame:
geodataframe = gpd.GeoDataFrame.from_features(feature_collection)