Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge

This repository contains the data and code for the baseline described in the following paper:

Entity Cloze By Date: What LMs Know About Unseen Entities
Yasumasa Onoe, Michael J.Q. Zhang, Shankar Padmanabhan, Greg Durrett, Eunsol Choi
ACL 2023

Getting Started

This codebase uses Python 3.7.9. Other versions may work as well.

Dependencies:

$ conda create -n ekp -y python=3.7.9
$ conda activate ekp
(ekp) $ pip install -r requirements.txt

Data

  • Entity Inferences: data/entity_inferences
  • ECBD: data/ecbd

Running experiments

From the root dir, run an experiment python file.

Example:

(ekp) $ python experiments/gpt_ft.py
Experiment Base Model Editing Method Data
gpt_ft_ecbd.py GPT2-XL or GPT-Neo 1.3B Finetuning ECBD
gpt_ft_entity_inferences.py GPT2-XL or GPT-Neo 1.3B Finetuning Entity Inferences
gpt_mend_ecbd.py GPT2-XL MEND ECBD
gpt_mend_entity_inferences.py GPT2-XL MEND Entity Inferences
t5_ft_ecbd.py T5-Large Finetuning ECBD
t5_ft_entity_inferences.py T5-Large Finetuning Entity Inferences
t5_mend_ecbd.py T5-Large MEND ECBD
t5_mend_entity_inferences.py T5-Large MEND Entity Inferences

NOTE: ROME with GPT2-XL will be added soon...

Citing the paper

@inproceedings{onoe-etal-2023-lms,
    title = {{Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge}},
    author = "Onoe, Yasumasa  and
      Zhang, Michael  and
      Padmanabhan, Shankar  and
      Durrett, Greg  and
      Choi, Eunsol",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.300",
    pages = "5469--5485",
}

Contact

Please contact at yasumasa@utexas.edu or yasumasaonoe@google.com if you have any questions.