/Paddle-YOLOv4

Paddle-YOLOv4,supports training, at least 41.1% mAP.支持训练,至少41.1%mAP。少数的给出精度的复现。

Primary LanguagePython

English | 简体中文

Paddle-YOLOv4

概述

Paddle-YOLOv4,参考自https://github.com/miemie2013/Keras-YOLOv4https://github.com/Tianxiaomo/pytorch-YOLOv4

推荐

本项目已经开源到AIStudio中,可直接跑: https://aistudio.baidu.com/aistudio/projectdetail/570310

咩酱刷屏时刻

Keras版YOLOv3: https://github.com/miemie2013/Keras-DIOU-YOLOv3

Pytorch版YOLOv3:https://github.com/miemie2013/Pytorch-DIOU-YOLOv3

PaddlePaddle版YOLOv3:https://github.com/miemie2013/Paddle-DIOU-YOLOv3

PaddlePaddle完美复刻版版yolact: https://github.com/miemie2013/PaddlePaddle_yolact

yolov3魔改成yolact: https://github.com/miemie2013/yolact

Keras版YOLOv4: https://github.com/miemie2013/Keras-YOLOv4 (mAP 41%+)

Pytorch版YOLOv4: https://github.com/miemie2013/Pytorch-YOLOv4 (mAP 41%+)

Paddle版YOLOv4:https://github.com/miemie2013/Paddle-YOLOv4 (mAP 41%+)

Keras版SOLO: https://github.com/miemie2013/Keras-SOLO

Paddle版SOLO: https://github.com/miemie2013/Paddle-SOLO

Pytorch版FCOS: https://github.com/miemie2013/Pytorch-FCOS

更新日记

2020/06/25:支持yolact中的fastnms。运行demo_fast.py即可体验。经过试验发现并没有官方的yolo_box()、multiclass_nms()快。可能需要用C++ op重写。

2020/07/16:加入YOLOv3增强版。见https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.3/docs/featured_model/YOLOv3_ENHANCEMENT.md 。项目根目录下

wget https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock_iouloss.tar

下载模型。(PS:训练速度是比不上PaddleDetection的,仅研究用)

2020/08/19:经过仔细核对yolov4原始配置文件,发现网络部分写错了,现已修正。运行1_pytorch2paddle.py后再运行eval.py,获得mAP=0.478。

需要补充

加入YOLOv4中的数据增强和其余的tricks;更多调优。

环境搭建

AIStudio已经为我们搭建好大部分依赖。

训练

下载我从Tianxiaomo的仓库保存下来的pytorch模型yolov4.pt 链接:https://pan.baidu.com/s/152poRrQW9Na_C8rkhNEh3g 提取码:09ou

(在本地windows中操作) 将它放在项目根目录下。然后运行1_pytorch2paddle.py得到一个yolov4文件夹,它也位于根目录下。

(在AIStudio中操作) 在AIStudio中创建一个自己的项目,克隆这个仓库的代码到项目里。要求AIStudio的~/work/下直接有本仓库的annotation/、data/文件夹, 即AIStudio的~/work/就是项目的根目录。 把windows中的yolov4文件夹打包成zip,通过AIStudio的“创建数据集”将zip包上传。 创建的项目使用这个数据集和COCO2017数据集,就可以完成预训练模型上传了。 (为了方便大家使用,我已经上传了预训练模型,本仓库自带的数据集“yolov4_pretrained”就是预训练模型了,在~/data/data40855/目录下) 进入AIStudio,把上传的预训练模型解压:

cd ~/w*
cp ../data/data40855/yolov4.zip ./yolov4.zip
unzip yolov4.zip

此外,你还要安装pycocotools依赖、解压COCO2017数据集:

cd ~
pip install pycocotools
cd data
cd data7122
unzip ann*.zip
unzip val*.zip
unzip tes*.zip
unzip image_info*.zip
unzip train*.zip
cd ~/w*

运行train.py进行训练:

rm -f train.txt
nohup python train.py>> train.txt 2>&1 &

通过修改config.py代码来进行更换数据集、更改超参数以及训练参数。 训练时默认每5000步计算一次验证集的mAP。或者运行eval.py评估指定模型的mAP。该mAP是val集的结果。

训练时如果发现mAP很稳定了,就停掉,修改学习率为原来的十分之一,接着继续训练,mAP还会再上升。暂时是这样手动操作。

训练自定义数据集

自带的voc2012数据集是一个很好的例子。

将自己数据集的txt注解文件放到annotation目录下,txt注解文件的格式如下:

xxx.jpg 18.19,6.32,424.13,421.83,20 323.86,2.65,640.0,421.94,20
xxx.jpg 48,240,195,371,11 8,12,352,498,14
# 图片名 物体1左上角x坐标,物体1左上角y坐标,物体1右下角x坐标,物体1右下角y坐标,物体1类别id 物体2左上角x坐标,物体2左上角y坐标,物体2右下角x坐标,物体2右下角y坐标,物体2类别id ...

运行1_txt2json.py会在annotation_json目录下生成两个coco注解风格的json注解文件,这是train.py支持的注解文件格式。 在config.py里修改train_path、val_path、classes_path、train_pre_path、val_pre_path这5个变量(自带的voc2012数据集直接解除注释就ok了)就可以开始训练自己的数据集了。 如果需要跑demo.py、eval.py,与数据集有关的变量也需要修改一下,应该很容易看懂。

评估

训练时默认每5000步计算一次验证集的mAP。或者运行eval.py评估指定模型的mAP。该mAP是val集的结果。

test-dev

运行test_dev.py。 运行完之后,进入results目录,把bbox_detections.json压缩成bbox_detections.zip,提交到 https://competitions.codalab.org/competitions/20794#participate 获得bbox mAP.

上述yolov4在test集的mAP是(input_shape = (608, 608),分数阈值=0.001,nms阈值=0.45的情况下)

Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.411
Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.640
Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.444
Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.235
Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.448
Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.516
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.322
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.506
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.533
Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.340
Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.579
Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.668

该mAP是test集的结果,也就是大部分检测算法论文的标准指标。有点谜,根据我之前的经验test集的mAP和val集的mAP应该是差不多的。原因已经找到,由于原版YOLO v4使用coco trainval2014进行训练,训练样本中包含部分评估样本,若使用val集会导致精度虚高。

预测

运行demo.py。

导出

python export_model.py

关于导出的参数请看export_model.py中的注释。导出后的模型默认存放在inference_model目录下,带有一个配置文件infer_cfg.yml。

用导出后的模型预测图片:

python deploy_infer.py --model_dir inference_model --image_dir images/test/

用导出后的模型预测视频:

python deploy_infer.py --model_dir inference_model --video_file D://PycharmProjects/moviepy/dddd.mp4

用导出后的模型播放视频:(按esc键停止播放)

python deploy_infer.py --model_dir inference_model --play_video D://PycharmProjects/moviepy/dddd.mp4

传送门

cv算法交流q群:645796480 但是关于仓库的疑问尽量在Issues上提,避免重复解答。

本人微信公众号:miemie_2013

技术博客:https://blog.csdn.net/qq_27311165

广告位招租

有偿接私活,可联系微信wer186259,金主快点来吧!