/duckienet

DuckieNet: Integrating Planning with Semantic Segmentation for Goal-Directed Autonomous Navigation in Crowded Environments

Primary LanguagePython

DuckieNet

Code accompanying the report for CS2309: Research Methodology

DuckieNet: Integrating Planning with Semantic Segmentation for Goal-Directed Autonomous Navigation in Crowded Environments, by Chen Yuan Bo and Larry Law

Requirements

Duckie-Net requires Keras v2.2.4, TensorFlow 1.15, Python 3.6, Ros Kinetic.

Installation

Install the prequisite packages via

conda env create -f environment.yaml
conda activate duckienet
conda env list // verify if environment was installed correctly

Important: Remember to swap out the path_to_repo with your own repository path! Do a find and swap of all occurrences in the whole repository.

Running Experiments

  1. Straight Road Experiments on DuckieNet ./gym-duckietown/duckienet.py --seg --map-name straight_road
  2. Straight Road Dynamic Experiments on DuckieNet ./gym-duckietown/duckienet.py --seg --map-name straight_road_moving
  3. DuckieTown Experiment on DuckieNet ./gym-duckietown/duckienet.py --seg --map-name udem1

You can vary the difficulty by choosing starting tile in ./gym-duckietown/gym_duckietown/maps/udem1.yaml.

To test the experiments on I-Net, simply use the I-Net model instead of the DuckieNet model, and remove the --seg flag.

Data Preparation

The data for the semantic segmentation model comprise of input variables RGB images and output variables segmentation labels.

  1. Use generate_valid_positions.ipynb inside ./gym-duckietown folder to generate valid spawn positions within DuckieTown.
  2. Generate segmentation labels: a. Swap out the textures/ and meshes/ folders inside ./gym-duckietown/gym_duckietown/ with the textures/ and meshes/ folders inside ./segmentation_textures/. b. Use generate_segmented_images.ipynb to generate the corresponding segmentation labels.
  3. Generate RGB images: a. Swap out the textures/ and meshes/ folders to the original folders. b. Use generate_segmented_images.ipynb to generate the corresponding RGB images.

The data for DuckieNet is prepared by following the steps in section 4.1.1 of the report with the command

./gym-duckietown/generate_data.py --map-name udem1 --save --counter-start 0

Data is saved in ./gym-duckietown/data

Training

The training of DuckieNet comprise of two phases.

  1. Training of BiSeNet. For more information, refer to the README file in the bisenet folder.
$ cd bisenet
$ export CUDA_VISIBLE_DEVICES=0,1
$ python -m torch.distributed.launch --nproc_per_node=2 tools/train_amp.py --model bisenetv2 # or bisenetv1
  1. Training of DuckieNet
$ cd intention_net/intention_net
$ python main.py --ds DUCKIETOWN --mode DLM --input_frame NORMAL --seg

To train Intention-Net (which does not use segmented images), remove the --seg flag.

Testing

Simply run the commands in 'Running Experiments' section, or run the model on any of DuckieTown maps in./gym-duckietown/gym_duckietown/maps/.

Metrics (as stated in section 4.1 of the report) will be logged in log.txt.

Citation

We used materials from the following code repositories.

Wei Gao, David Hsu, Wee Sun Lee, Shengmei Shen, & Karthikk Subramanian. (2017). Intention-Net: Integrating Planning and Deep Learning for Goal-Directed Autonomous Navigation. [https://github.com/AdaCompNUS/intention_net/tree/master/intention_net]

Atsushi Sakai, Daniel Ingram, Joseph Dinius, Karan Chawla, Antonin Raffin, & Alexis Paques. (2018). PythonRobotics: a Python code collection of robotics algorithms. [https://github.com/AtsushiSakai/PythonRobotics]

Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, & Nong Sang. (2018). BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation. [https://github.com/CoinCheung/BiSeNet]

L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F. Chen, C. Choi, J. Dusek, Y. Fang, D. Hoehener, S. Liu, M. Novitzky, I. F. Okuyama, J. Pazis, G. Rosman, V. Varricchio, H. Wang, D. Yershov, H. Zhao, M. Benjamin, C. Carr, M. Zuber, S. Karaman, E. Frazzoli, D. Del Vecchio, D. Rus, J. How, J. Leonard, & A. Censi (2017). Duckietown: An open, inexpensive and flexible platform for autonomy education and research. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1497-1504). [https://github.com/duckietown/gym-duckietown]