/Faster-RCNN-Keras

少数民族街景文字检测;云南丽江;纳西;东巴;

Primary LanguagePythonApache License 2.0Apache-2.0

Cloned from https://github.com/yhenon/keras-rcnn

Added Chinese and Naxi detection data set.

XML: https://github.com/yddcode/yolo-keras/tree/main/VOCdevkit/VOC2007

labelme 生成的json文件:

链接:https://pan.baidu.com/s/1M-h4H6UL1PGztUaWMyLlZQ 提取码:hre8

Added resnet101 support.

keras-frcnn

Keras implementation of Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

USAGE:

  • train_frcnn.py can be used to train a model. To train on Pascal VOC data, simply do: python train_frcnn.py /path/to/pascalvoc/data/

  • the Pascal VOC data set (images and annotations for bounding boxes around the classified objects) can be obtained from: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

  • simple_parser.py provides an alternative way to input data, using a text file. Simply provide a text file, with each line containing:

filepath,x1,y1,x2,y2,class_name

For example:

/data/imgs/img_001.jpg,837,346,981,456,naxi

/data/imgs/img_002.jpg,215,312,279,391,chinese

  • test_frcnn.py can be used to perform inference, given pretrained weights. Specify a path to the folder containing images:

python test_frcnn.py /path/to/imgs/

/results_imgs is predicted image.

NOTES: config.py contains all settings for the train or test run. The default settings match those in the original Faster-RCNN paper. The anchor box sizes are [128, 256, 512] and the ratios are [1:1, 1:2, 2:1].

Example output:

ex1 ex2 ex3 ex4

Useful Links

A report of this code from zhihu: https://zhuanlan.zhihu.com/p/28585873